Surface Photonic Crystal Engineering of a Multi-Mode VCSEL for a Bit-Loaded Broadband QAM-OFDM Data Link at 99 Gbit/s
Abstract
:1. Introduction
2. Experimental Setup
2.1. Device Design and Fabrication of the PhC VCSEL
2.2. QAM-OFDM Data Transmission Analysis
3. Results
3.1. Device Characteristics of the Three PhC VCSELs
3.2. Transmission of Pre-Compensated 16-QAM-OFDM and Bit-Loaded QAM-OFDM Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Westbergh, P.; Gustavsson, J.; Haglund, A.; Sunnerud, H.; Larsson, A. Large aperture 850 nm VCSELs operating at bit rates up to 25 Gbit/s. Electron. Lett. 2008, 44, 907–908. [Google Scholar] [CrossRef]
- Tatum, J.A.; Gazula, D.; Graham, L.A.; Guenter, J.K.; Johnson, R.H.; King, J.; Kocot, C.; Landry, G.D.; Lyubomirsky, I.; MacInnes, A.N.; et al. VCSEL-Based Interconnects for Current and Future Data Centers. J. Light. Technol. 2015, 33, 727–732. [Google Scholar] [CrossRef]
- Tan, F.; Wu, M.-K.; Liu, M.; Feng, M.; Holonyak, N. 850 nm Oxide-VCSEL With Low Relative Intensity Noise and 40 Gb/s Error Free Data Transmission. IEEE Photonics Technol. Lett. 2014, 26, 289–292. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Wang, H.-Y.; Wu, C.-H.; Cheng, C.-H.; Tsai, C.-T.; Wu, C.-H.; Feng, M.; Lin, G.-R. Comparison of high-speed PAM4 and QAM-OFDM data transmission using single-mode VCSEL in OM5 and OM4 MMF links. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1500210. [Google Scholar] [CrossRef]
- Chi, K.-L.; Shi, Y.-X.; Chen, X.-N.; Chen, J.; Yang, Y.-J.; Kropp, J.-R.; Ledentsov, N., Jr.; Agustin, M.; Ledentsov, N.N.; Stepniak, G.; et al. Single-mode 850-nm VCSELs for 54-Gb/s ON-OFF keying transmission over 1-km multi-mode fiber. IEEE Photonics Technol. Lett. 2016, 28, 1367–1370. [Google Scholar] [CrossRef]
- Blokhin, S.A.; Lott, J.A.; Mutig, A.; Fiol, G.; Ledentsov, N.N.; Maximov, M.V.; Nadtochiy, A.M.; Shchukin, V.A.; Bimberg, D. Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s. Electron. Lett. 2009, 45, 501–503. [Google Scholar] [CrossRef]
- Chen, C.; Tian, Z.; Choquette, K.D.; Plant, D.V. 25-Gb/s direct modulation of implant confined holey vertical-cavity surface-emitting lasers. IEEE Photonics Technol. Lett. 2010, 22, 465–467. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Wang, C.; Johansson, L.; Coldren, L. High-efficiency, high-speed VCSELs with deep oxidation layers. Electron. Lett. 2006, 42, 1281–1283. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Taunay, T.F.; Yan, M.F.; Fishteyn, M.; Oulundsen, G.; Vaidya, D. 70-Gb/s multicore multimode fiber transmissions for optical data links. IEEE Photonics Technol. Lett. 2010, 22, 1647–1649. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, Y.; Zhou, H.; Deng, C.; Duan, S.; Wang, Z.; Li, Y.; Song, Y.; Chen, J.; Zhang, J.; et al. 137 Gb/s PAM-4 Transmissions at 850 nm over 40 cm Optical Backplane with 25 G Devices with Improved Neural Network-Based Equalization. Appl. Sci. 2019, 9, 5095. [Google Scholar] [CrossRef] [Green Version]
- Ou, Y.; Gustavsson, J.S.; Westbergh, P.; Haglund, A.; Larsson, A.; Joel, A. Impedance Characteristics and Parasitic Speed Limitations of High-Speed 850-nm VCSELs. IEEE Photonics Technol. Lett. 2009, 21, 1840–1842. [Google Scholar] [CrossRef]
- Shi, J.W.; Wei, Z.R.; Chi, K.L.; Jiang, J.W.; Wun, J.M.; Lu, I.C.; Chen, J.; Yang, Y.-J. Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850 nm for short to medium reach (2 km) optical interconnects. J. Light. Technol. 2013, 31, 4037–4044. [Google Scholar] [CrossRef]
- Kao, H.-Y.; Cheng, W.-H.; Wu, C.-H.; Lin, G.-R.; Tsai, C.-T.; Chi, Y.-C.; Peng, C.-Y.; Leong, S.-F.; Wang, H.-Y.; Cheng, C.-H.; et al. Long-Term Thermal Stability of Single-Mode VCSEL Under 96-Gbit/s OFDM Transmission. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1500609. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Tsai, C.-T.; Weng, J.-H.; Cheng, C.-H.; Wang, H.-Y.; Wu, C.-H.; Feng, M.; Lin, G.-R. Temperature and Noise Dependence of Tri-Mode VCSEL Carried 120-Gbit/s QAM-OFDM Data in Back-to-Back and OM5-MMF Links. J. Light. Technol. 2020, 38, 6746–6758. [Google Scholar] [CrossRef]
- Lu, I.-C.; Wei, C.-C.; Chen, H.-Y.; Chen, K.-Z.; Huang, C.-H.; Chi, K.-L.; Shi, J.-W.; Lai, F.-I.; Hsieh, D.-H.; Kuo, H.-C.; et al. Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 1701009. [Google Scholar] [CrossRef]
- Hsueh, T.-H.; Kuo, H.-C.; Lai, F.-I.; Laih, L.-H.; Wang, S.-C. High-speed characteristics of large-area single-transverse-mode vertical-cavity surface-emitting lasers. Electron. Lett. 2003, 39, 1519–1521. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.P.; Fryslie, S.T.M.; Lott, J.A.; Ledentsov, N.N.; Bimberg, D.; Choquette, K.D. Error-Free Transmission Over 1-km OM4 Multimode Fiber at 25 Gb/s Using a Single Mode Photonic Crystal Vertical-Cavity Surface-Emitting Laser. IEEE Photonics Technol. Lett. 2013, 25, 1823–1825. [Google Scholar] [CrossRef]
- Guo, X.; Dong, J.; He, X.; Hu, S.; He, Y.; Lv, B.; Li, C. Heat dissipation effect on modulation bandwidth of high-speed 850-nm VCSELs. J. Appl. Phys. 2017, 121, 133105. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Lee, F.-M.; Cheng, F.-Y.; Wu, M.-C.; Ko, S.-C.; Wang, H.-L.; Ho, W.-J. Silicon oxide-planarized single-mode 850-nm VCSELs with TO package for 10 Gb/s data transmission. IEEE Electron Device Lett. 2005, 26, 304–307. [Google Scholar] [CrossRef]
- Lin, G.-R.; Cheng, C.-H.; Kuo, H.-C.; Lee, S.-Y.; Chen, X.; Wang, C.-H.; Li, M.-J.; Huang, Y.-M.; Huang, W.-T.; Yang, D. Nearly 70 Gbit/s NRZ-OOK encoding of a dual-mode 850 nm VCSEL with a highly In-doped and small Zn-diffused emission area. Photonics Res. 2022, 10, 1602. [Google Scholar] [CrossRef]
- Kao, H.-Y.; Tsai, C.-T.; Leong, S.-F.; Peng, C.-Y.; Chi, Y.-C.; Huang, J.J.; Kuo, H.-C.; Shih, T.-T.; Jou, J.-J.; Cheng, W.-H.; et al. Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission. Opt. Express 2017, 25, 16347–16363. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-H.; Shen, C.-C.; Kao, H.-Y.; Hsieh, D.-H.; Wang, H.-Y.; Yeh, Y.-W.; Lu, Y.-T.; Huang Chen, S.-W.; Tsai, C.-T.; Chi, Y.-C.; et al. 850/940-nm VCSEL for optical communication and 3D sensing. Opto-Electron. Adv. 2018, 1, 180005. [Google Scholar] [CrossRef]
- Song, D.-S.; Kim, S.-H.; Park, H.-G.; Kim, C.-K.; Lee, Y.-H. Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 2002, 80, 3901–3903. [Google Scholar] [CrossRef] [Green Version]
- Danner, A.J.; Raftery, J.J., Jr.; Yokouchi, N.; Choquette, K.D. Transverse modes of photonic crystal vertical-cavity lasers. Appl. Phys. Lett. 2004, 84, 1031–1033. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-H.; Tsai, C.-T.; Wu, W.-L.; Cheng, C.-H.; Choquette, K.D.; Lin, G.-R. Photonic crystal structured multi-mode VCSELs enabling 92-Gbit/s QAM-OFDM transmission. J. Light. Technol. 2021, 39, 4331–4340. [Google Scholar] [CrossRef]
- Shi, J.-W.; Chen, C.-C.; Wu, Y.-S.; Guol, S.-H.; Kuo, C.; Yang, Y.-J. High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength. IEEE Photonics Technol. Lett. 2008, 20, 1121–1123. [Google Scholar] [CrossRef]
- Chen, C.C.; Liaw, S.J.; Yang, Y.J. Stable single-mode operation of an 850-nm VCSEL with a higher order mode absorber formed by shallow Zn diffusion. IEEE Photonics Technol. Lett. 2001, 13, 266–268. [Google Scholar] [CrossRef]
- Shi, J.-W.; Kuo, F.-M.; Hsu, T.-C.; Yang, Y.-J.; Joel, A.; Mattingley, M.; Chyi, J.-I. The Monolithic Integration of GaAs–AlGaAs-Based Unitraveling-Carrier Photodiodes With Zn-Diffusion Vertical-Cavity Surface-Emitting Lasers With Extremely High Data Rate/Power Consumption Ratios. IEEE Photonics Technol. Lett. 2009, 21, 1444–1446. [Google Scholar] [CrossRef]
- Tanigawa, T.; Onishi, T.; Nagai, S.; Ueda, T. 12.5-gbps operation of 850-nm vertical-cavity surface-emitting lasers with reduced parasitic capacitance by BCB planarization technique. IEEE J. Quantum Electron. 2006, 42, 785–790. [Google Scholar] [CrossRef]
- Haglund, E.P.; Kumari, S.; Haglund, E.; Gustavsson, J.S.; Baets, R.G.; Roelkens, G.; Larsson, A. Silicon-Integrated Hybrid-Cavity 850-nm VCSELs by Adhesive Bonding: Impact of Bonding Interface Thickness on Laser Performance. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1700109. [Google Scholar] [CrossRef] [Green Version]
- Kao, H.-Y.; Chi, Y.-C.; Tsai, C.-T.; Leong, S.-F.; Peng, C.-Y.; Wang, H.-Y.; Huang, J.J.; Jou, J.-J.; Shih, T.-T.; Kuo, H.-C.; et al. Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber. Photonics Res. 2017, 5, 507–515. [Google Scholar] [CrossRef]
- Kuchta, D.M.; Rylyakov, A.V.; Doany, F.E.; Schow, C.L.; Proesel, J.E.; Baks, C.W.; Westbergh, P.; Gustavsson, J.S.; Larsson, A. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link. IEEE Photonics Technol. Lett. 2015, 27, 577–580. [Google Scholar] [CrossRef]
- Szczerba, K.; Westbergh, P.; Karlsson, M.; Andrekson, P.A.; Larsson, A. 70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL. J. Light. Technol. 2015, 33, 1395–1401. [Google Scholar] [CrossRef] [Green Version]
- Lavrencik, J.; Thomas, V.A.; Varughese, S.; Ralph, S.E. DSP-enabled 100 Gb/s PAM-4 VCSEL MMF links. J. Light. Technol. 2017, 35, 3189–3196. [Google Scholar] [CrossRef]
- Xiong, F. M-ary amplitude shift keying OFDM system. IEEE Trans. Commun. 2003, 51, 1638–1642. [Google Scholar] [CrossRef]
- Tsai, C.-T.; Peng, C.-Y.; Wu, C.-Y.; Leong, S.-F.; Kao, H.-Y.; Wang, H.-Y.; Chen, Y.-W.; Weng, Z.-K.; Chi, Y.-C.; Kuo, H.-C.; et al. Multi-Mode VCSEL Chip with High-Indium-Density InGaAs/AlGaAs Quantum-Well Pairs for QAM-OFDM in Multi-Mode Fiber. IEEE J. Quantum Electron. 2017, 53, 2400608. [Google Scholar] [CrossRef]
- Dave, H.; Fryslie, S.T.; Schutt-Ainé, J.E.; Choquette, K.D. Modulation enhancements for photonic crystal VCSELs. Proc. SPIE 2017, 10122, 1012207. [Google Scholar]
- 802.3bs-2017—IEEE Standard for Ethernet—Amendment 10: Media Access Control Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400 Gb/s Operation. Available online: https://ieeexplore.ieee.org/document/8207825 (accessed on 12 December 2017).
- Kasten, A.M.; Tan, M.P.; Leisher, P.O.; Choquette, K.D. Endlessly single-mode photonic-crystal vertical-cavity surface-emitting lasers. Proc. SPIE 2008, 6908, 69080B1. [Google Scholar]
- Siriani, D.F.; Tan, M.P.; Kasten, A.M.; Lehman, A.C.; Leisher, P.O.; Sulkin, J.D.; Raftery, J.J., Jr.; Danner, A.J.; Giannopoulos, A.V.; Choquette, K.D. Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 909–917. [Google Scholar] [CrossRef]
- Yokouchi, N.; Danner, A.; Choquette, K. Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 2003, 9, 1439–1445. [Google Scholar] [CrossRef]
- Coldren, L.A.; Corzine, S.W.; Mašanović, M.L. Diode Lasers and Photonic Integrated Circuits; Wiley: New York, NY, USA, 2012. [Google Scholar]
- Park, H.-G.; Hwang, J.-K.; Huh, J.; Ryu, H.-Y.; Kim, S.-H.; Kim, J.-S.; Lee, Y.-H. Characteristics of modified single-defect two-dimensional photonic crystal lasers. IEEE J. Quantum Electron. 2002, 38, 1353–1365. [Google Scholar] [CrossRef]
- Zhang, Y.; Khan, M.; Huang, Y.; Ryou, J.; Deotare, P.; Dupuis, R.; Lončar, M. Photonic crystal nanobeam lasers. Appl. Phys. Lett. 2010, 97, 051104. [Google Scholar] [CrossRef] [Green Version]
- Westbergh, P.; Gustavsson, J.S.; Kögel, B.; Haglund, Å.; Larsson, A. Impact of photon lifetime on high-speed VCSEL performance. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1603–1613. [Google Scholar] [CrossRef]
- Haglund, E.; Haglund, Å.; Gustavsson, J.S.; Kögel, B.; Westbergh, P.; Larsson, A. Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter. in SPIE 8276. In Proceedings of the Vertical-Cavity Surface-Emitting Lasers XVI, San Francisco, CA, USA, 7 February 2012. [Google Scholar]
- Westbergh, P.; Gustavsson, J.S.; Haglund, Å.; Skold, M.; Joel, A.; Larsson, A. High-Speed, Low-Current-Density 850 nm VCSELs. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 694–703. [Google Scholar] [CrossRef]
- IEEE 802.3™ Industry Connections Ethernet Bandwidth Assessment. Available online: http://www.ieee802.org/3/ad_hoc/bwa/BWA_Report.pdf (accessed on 19 July 2012).
- Lee, S.-Y.; Cheng, C.-H.; Tseng, H.-Y.; Chen, X.; Lo, W.-C.; Li, K.; Wang, C.-H.; Tsai, C.-T.; Kuo, H.-C.; Li, M.-J.; et al. Comparing the Dual-Mode VCSEL in OM4-MMF and GI-SMF Links for NRZ-OOK and 16-QAM-OFDM Transmissions. IEEE Photonics J. 2022, 14, 7927713. [Google Scholar] [CrossRef]
- Lin, G.-R.; Kuo, H.-C.; Cheng, C.-H.; Wu, Y.-C.; Huang, Y.-M.; Liou, F.-J.; Lee, Y.-C. Ultrafast 2 × 2 green micro-LED array for optical wireless communication beyond 5 Gbit/s. Photonics Res. 2021, 9, 2077–2087. [Google Scholar] [CrossRef]
- Papandreou, N.; Antonakopoulos, T. A new computationally efficient discrete bit-loading algorithm for DMT applications. IEEE Trans. Commun. 2005, 53, 785–789. [Google Scholar] [CrossRef]
- Ling, W.A.; Lyubomirsky, I.; Rodes, R.; Daghighian, H.M.; Kocot, C. Single-Channel 50G and 100G Discrete Multitone Transmission With 25G VCSEL Technology. J. Light. Technol. 2015, 33, 761–767. [Google Scholar] [CrossRef]
b/a | a (μm) | b (μm) | Metal Opening (μm) | Implant Aperture (μm) | Optical Aperture (μm) | |
---|---|---|---|---|---|---|
PhC VCSEL-(1) | 0.6 | 5 | 3 | 13 | 17 | 7 |
PhC VCSEL-(2) | 0.7 | 3.5 | 2.45 | 9.45 | 13.45 | 4.55 |
PhC VCSEL-(3) | 0.7 | 4.5 | 3.15 | 12.15 | 16.15 | 5.85 |
Btb Case | ||||
PhC VCSEL-(1) | ||||
QAM level | 32-QAM | 8-QAM | 4-QAM | |
Bandwidth | 9.7 GHz | 3 GHz | 1.6 GHz | |
EVM | 11.7% | 24.3% | 34.7% | |
SNR | 18.6 dB | 12.3 dB | 9.2 dB | |
BER | 2.8 × 10−3 | 3.1 × 10−3 | 1.9 × 10−3 | |
Total Data Rate | 60.7 Gbit/s | |||
PC VCSEL(2) | ||||
QAM level | 32-QAM | 8-QAM | 4-QAM | |
Bandwidth | 13.3 GHz | 2.5 GHz | 5.5 GHz | |
EVM | 12% | 24% | 37.1% | |
SNR | 18.4 dB | 12.4 dB | 8.6 dB | |
BER | 3.1 × 10−3 | 2.6 × 10−3 | 3.4 × 10−3 | |
Total Data Rate | 85 Gbit/s | |||
PhC VCSEL-(3) | ||||
QAM level | 16-QAM | 4-QAM | ||
Bandwidth | 14 GHz | 4.5 GHz | ||
EVM | 17.2% | 37.2% | ||
SNR | 15.3 dB | 8.6 dB | ||
BER | 3.5 × 10−3 | 3.5 × 10−3 | ||
Total Data Rate | 65 Gbit/s | |||
100 m OM5-MMF case | ||||
PhC VCSEL-(1) | ||||
QAM level | 32-QAM | 8-QAM | 4-QAM | |
Bandwidth | 9.3 GHz | 3.2 GHz | 1.2 GHz | |
EVM | 12% | 24.5% | 36.3% | |
SNR | 18.5 dB | 12.2 dB | 8.8 dB | |
BER | 2.9 × 10−3 | 3.2 × 10−3 | 2.8 × 10−3 | |
Total Data Rate | 58.5 Gbit/s | |||
PhC VCSEL-(2) | ||||
QAM level | 32-QAM | 8-QAM | 4-QAM | |
Bandwidth | 12.6 GHz | 2.2 GHz | 5.8 GHz | |
EVM | 12.3% | 23.4% | 32.7% | |
SNR | 18.2 dB | 12.6 dB | 9.7 dB | |
BER | 3.8 × 10−3 | 2.2 × 10−3 | 1.6 × 10−3 | |
Total Data Rate | 81.2 Gbit/s | |||
PhC VCSEL-(3) | ||||
QAM level | 16-QAM | 4-QAM | ||
Bandwidth | 13.7 GHz | 4.9 GHz | ||
EVM | 17.2% | 36.7% | ||
SNR | 15.3 dB | 8.7 dB | ||
BER | 3.6 × 10−3 | 3.2 × 10−3 | ||
Total Data Rate | 64.6 Gbit/s |
BtB case | |||||
QAM level | 32-QAM | 16-QAM | 8-QAM | 4-QAM | BPSK |
Bandwidth | 8.7 GHz | 6.6 GHz | 4.5 GHz | 5.3 GHz | 4.9 GHz |
SNR | 19.6 dB | 16.4 dB | 12.3 dB | 9.2 dB | 4.6 dB |
BER | 9.3 × 10−4 | 1.2 × 10−3 | 3.1 × 10−3 | 2.1 × 10−3 | 1.9 × 10−3 |
Total Data Rate | 98.9 Gbit/s | ||||
100 m OM5-MMF case | |||||
QAM level | 32-QAM | 16-QAM | 8-QAM | 4-QAM | BPSK |
Bandwidth | 5.9 GHz | 4.7 GHz | 12.7 GHz | 2.1 GHz | 4.7 GHz |
SNR | 18.8 dB | 16.7 dB | 14 dB | 10 dB | 6.7 dB |
BER | 2.2 × 10−3 | 8.4 × 10−4 | 4.5 × 10−4 | 8.1 × 10−4 | 1.2 × 10−4 |
Total Data Rate | 95.3 Gbit/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-H.; Cheng, C.-H.; Tsai, C.-T.; Wu, W.-L.; Choquette, K.D.; Lin, G.-R. Surface Photonic Crystal Engineering of a Multi-Mode VCSEL for a Bit-Loaded Broadband QAM-OFDM Data Link at 99 Gbit/s. Photonics 2023, 10, 549. https://doi.org/10.3390/photonics10050549
Lin Y-H, Cheng C-H, Tsai C-T, Wu W-L, Choquette KD, Lin G-R. Surface Photonic Crystal Engineering of a Multi-Mode VCSEL for a Bit-Loaded Broadband QAM-OFDM Data Link at 99 Gbit/s. Photonics. 2023; 10(5):549. https://doi.org/10.3390/photonics10050549
Chicago/Turabian StyleLin, Yu-Hong, Chih-Hsien Cheng, Cheng-Ting Tsai, Wei-Li Wu, Kent D. Choquette, and Gong-Ru Lin. 2023. "Surface Photonic Crystal Engineering of a Multi-Mode VCSEL for a Bit-Loaded Broadband QAM-OFDM Data Link at 99 Gbit/s" Photonics 10, no. 5: 549. https://doi.org/10.3390/photonics10050549
APA StyleLin, Y. -H., Cheng, C. -H., Tsai, C. -T., Wu, W. -L., Choquette, K. D., & Lin, G. -R. (2023). Surface Photonic Crystal Engineering of a Multi-Mode VCSEL for a Bit-Loaded Broadband QAM-OFDM Data Link at 99 Gbit/s. Photonics, 10(5), 549. https://doi.org/10.3390/photonics10050549