Development of 3D Microstructures for the Formation of a Set of Optical Traps on the Optical Axis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Development of 3D Microstructures
3.2. Formation of Single Optical Traps by Annular Gratings
3.3. Formation of Multiple Optical Traps by Reverse Annular Gratings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, J.; Gao, B.; Zhu, G.; Liu, D.; Wang, L.G. Precise position and angular control of optical trapping and manipulation via a single vortex-pair beam. Opt. Lasers Eng. 2022, 148, 106773. [Google Scholar] [CrossRef]
- Lu, Y.; Holland, C.M.; Cheuk, L.W. Molecular Laser Cooling in a Dynamically Tunable Repulsive Optical Trap. Phys. Rev. Lett. 2022, 128, 213201. [Google Scholar] [CrossRef]
- Vilas, N.B.; Hallas, C.; Anderegg, L.; Robichaud, P.; Winnicki, A.; Mitra, D.; Doyle, J.M. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 2022, 606, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Pan, Y.L.; Videen, G.; Wang, C. Optical trapping and manipulation of single particles in air: Principles, technical details, and applications. J. Quant. Spectrosc. Radiat. Transf. 2018, 214, 94–119. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, Y.; Chen, M.; Arita, Y.; Rosales-Guzmán, C. Optical trapping with structured light: A review. Adv. Photonics 2021, 3, 34001. [Google Scholar] [CrossRef]
- Sokolenko, B.V.; Lyakhovich, N.V.; Sidorenkova, O.S. Optical tweezers and manipulators. Modern concepts and future prospect. Phys.–Uspekhi 2022, 65, 812–833. [Google Scholar] [CrossRef]
- Zhang, Y.; Min, C.; Dou, X.; Wang, X.; Urbach, H.P.; Somekh, M.G.; Yuan, X. Plasmonic tweezers: For nanoscale optical trapping and beyond. Light Sci. Appl. 2021, 10, 59. [Google Scholar] [CrossRef]
- Suarez, R.A.; Neves, A.A.; Gesualdi, M.R. Optical trapping with non-diffracting Airy beams array using a holographic optical tweezers. Opt. Laser Technol. 2021, 135, 106678. [Google Scholar] [CrossRef]
- Skidanov, R.; Khonina, S.; Porfirev, A.; Pavelyev, V.; Kachalov, D. Three-dimensional laser trapping on the base of binary radial diffractive optical element. J. Mod. Opt. 2015, 62, 1183–1186. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Fomchenkov, S.A.; Porfiriev, D.P.; Khonina, S.N.; Karpeev, S.V. Multi-plane photophoretic trapping of airborne particles with a multi-linear optical trap. Optik 2022, 271, 170118. [Google Scholar] [CrossRef]
- Dittrich, S.; Barcikowski, S.; Gökce, B. Plasma and nanoparticle shielding during pulsed laser ablation in liquids cause ablation efficiency decrease. Opto-Electron. Adv. 2021, 4, 200072. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M.; Bjorkholm, J.E.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouesbet, G. Generalized Lorenz--Mie theories and me-chanical effects of laser light, on the occasion of Arthur Ashkin’s receipt of the 2018 Nobel prize in physics for his pioneering work in optical levitation and manipulation: A review. J. Quant. Spectrosc. Radiat. Transf. 2019, 225, 258–277. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, M.; Xiong, Z.; Li, Z. 3D dynamic motion of a dielectric micro-sphere within optical tweezers. Opto-Electron. Adv. 2021, 4, 1200015. [Google Scholar] [CrossRef]
- Ahmadi, A.; Reihani, S.N.S. Axial potential mapping of optical tweezers for biopolymer stretching: The bead size matters. Opt. Lett. 2013, 38, 685–687. [Google Scholar] [CrossRef] [PubMed]
- Gardini, L.; Heissler, S.M.; Arbore, C.; Yang, Y.; Sellers, J.R.; Pavone, F.S.; Capitanio, M. Dissecting myosin-5B mechanosensitivity and calcium regulation at the single molecule level. Nat. Commun. 2018, 9, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, M.C.; Wei, X.B.; Zhou, J.H.; Wang, Z.Q.; Li, Y.M. Trapping red blood cells in living animals using optical tweezers. Nat. Commun. 2013, 4, 1768. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Fu, W.; Chi, H.; Mesias, V.S.D.; Zhu, H.; Leung, C.W.; Liu, W.; Huang, J. Optical tweezers-controlled hotspot for sensitive and reproducible sur-face-enhanced Raman spectroscopy characterization of native protein structures. Nat. Commun. 2021, 12, 1292. [Google Scholar] [CrossRef]
- Liang, Y.; Liang, G.; Xiang, Y.; Lamstein, J.; Gautam, R.; Bezryadina, A.; Chen, Z. Manipulation and assessment of human red blood cells with tunable “tug-of-war” optical tweezers. Phys. Rev. Appl. 2019, 12, 64060. [Google Scholar] [CrossRef]
- Hong, C.; Yang, S.; Ndukaife, J.C. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Nat. Nanotechnol. 2020, 15, 908–913. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.; Liu, Y.; Kollipara, P.S.; Feng, Y.; Zhang, Z.; Zheng, Y. Opto-refrigerative tweezers. Sci. Adv. 2021, 7, eabh1101. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.C. Optoelectronic tweezers. Nat. Photonics 2011, 5, 322–324. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Zheng, Y. Heat-mediated optical manipulation. Chem. Rev. 2021, 122, 3122–3179. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Y.; Lin, L.; Wang, M.; Jiang, T.; Guo, J.; Ding, H.; Kollipara, P.S.; Inoue, Y.; Fan, D.; et al. Optical nanomanipulation on solid substrates via optothermally-gated photon nudging. Nat. Commun. 2019, 10, 5672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huft, P.R.; Kolbow, J.D.; Thweatt, J.T.; Lindquist, N.C. Holographic plasmonic nanotweezers for dynamic trapping and manipulation. Nano Lett. 2017, 17, 7920–7925. [Google Scholar] [CrossRef]
- Li, J.; Hill, E.H.; Lin, L.; Zheng, Y. Optical nanoprinting of colloidal particles and functional structures. ACS Nano 2019, 13, 3783–3795. [Google Scholar] [CrossRef]
- Shvedov, V.G.; Hnatovsky, K.; Shostka, N.V.; Rode, A.; Krolikowsky, W. Optical manipulation of particle ensembles in air. Opt. Lett. 2012, 37, 1934–1936. [Google Scholar] [CrossRef]
- Khonina, S.N.; Porfirev, A.P.; Volotovskiy, S.G.; Ustinov, A.V.; Fomchenkov, S.A.; Pavelyev, V.S.; Schröter, S.; Duparré, M. Generation of Multiple Vector Optical Bottle Beams. Photonics 2021, 8, 218. [Google Scholar] [CrossRef]
- Devlin, R.C.; Ambrosio, A.; Wintz, D.; Oscurato, S.L.; Zhu, A.Y.; Khorasaninejad, M.; Oh, J.; Maddalena, P.; Capasso, F. Spin-to-orbital angular momentum conversion in dielectric metasurfaces. Opt. Express 2017, 25, 377–393. [Google Scholar] [CrossRef] [Green Version]
- Ng, J.; Lin, Z.; Chan, C.T. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett. 2010, 104, 103601. [Google Scholar] [CrossRef]
- Wei, H.; Amrithanath, A.K.; Krishnaswamy, S. 3D printing of mi-cro-optic spiral phase plates for the generation of optical vortex beams. IEEE Photonics Technol. Lett. 2019, 31, 599–602. [Google Scholar] [CrossRef]
- Lamperska, W.; Masajada, J.; Drobczyński, S.; Wasylczyk, P. Optical vortex torque measured with optically trapped microbarbells. Appl. Opt. 2020, 59, 4703–4707. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Lin, X.; Zhang, H.; Ma, X.; Zou, Y.; Xu, L.; Xu, Y.; Jin, L. Design of bottle beam based on dual-beam for trapping particles in air. Appl. Opt. 2019, 58, 2471–2480. [Google Scholar] [CrossRef]
- Yang, Z.; Lin, X.; Zhang, H.; Xu, Y.; Jin, L.; Zou, Y.; Ma, X. Research on the special bottle beam generated by asymmetric elliptical Gaussian beams through an axicon-lens system. Opt. Lasers Eng. 2020, 126, 105899. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Khorin, P.A.; Butt, M.A. Modern types of axicons: New functions and applications. Sensors 2021, 21, 6690. [Google Scholar] [CrossRef] [PubMed]
- Kachalov, D.G.; Gamazkov, K.A.; Pavelyev, V.S.; Khonina, S.N. Optimization of binary doe for formation of the “Light Bottle”. Comput. Opt. 2011, 35, 70–76. [Google Scholar]
- Pavelyev, V.; Osipov, V.; Kachalov, D.; Khonina, S.; Cheng, W.; Gaidukeviciute, A.; Chichkov, B. Diffractive optical elements for the formation of “light bottle” intensity distributions. Appl. Opt. 2012, 51, 4215–4218. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.V. Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A Pure Appl. Opt. 2004, 6, 259. [Google Scholar] [CrossRef]
- Savelyev, D.A. The investigation of the features of focusing vortex super-Gaussian beams with a variable-height diffractive axicon. Comput. Opt. 2021, 45, 214–221. [Google Scholar] [CrossRef]
- Savelyev, D.; Kazanskiy, N. Near-Field Vortex Beams Diffraction on Surface Micro-Defects and Diffractive Axicons for Polarization State Recognition. Sensors 2021, 21, 1973. [Google Scholar] [CrossRef] [PubMed]
- Porfirev, A.P.; Kuchmizhak, A.A.; Gurbatov, S.O.; Juodkazis, S.; Khonina, S.N.; Kul’chin, Y.N. Phase singularities and optical vortices in photonics. Phys.-Uspekhi 2022, 65, 789–811. [Google Scholar] [CrossRef]
- Fatkhiev, D.M.; Butt, M.A.; Grakhova, E.P.; Kutluyarov, R.V.; Stepanov, I.V.; Kazanskiy, N.L.; Khonina, S.N.; Lyubopytov, V.S.; Sultanov, A.K. Recent advances in generation and detection of orbital angular momentum optical beams—A review. Sensors 2021, 21, 4988. [Google Scholar] [CrossRef] [PubMed]
- Padgett, M.J. Orbital angular momentum 25 years on. Opt. Express 2017, 25, 11265–11274. [Google Scholar] [CrossRef] [PubMed]
- Paez-Lopez, R.; Ruiz, U.; Arrizon, V.; Ramos-Garcia, R. Optical manipulation using optimal annular vortices. Opt. Lett. 2016, 41, 4138–4141. [Google Scholar] [CrossRef]
- Khonina, S.N.; Skidanov, R.V.; Kotlyar, V.V.; Soifer, V.A.; Turunen, J. DOE-generated laser beams with given orbital angular moment: Application for micromanipulation. Proc. SPIE 2005, 5962, 852–863. [Google Scholar] [CrossRef]
- Khonina, S.N.; Karpeev, S.V.; Butt, M.A. Spatial-light-modulator-based multi-channel data transmission by vortex beams of various orders. Sensors 2021, 21, 2988. [Google Scholar] [CrossRef]
- Zhu, F.; Huang, S.; Shao, W.; Zhang, J.; Chen, M.; Zhang, W.; Zeng, J. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM). Opt. Commun. 2017, 396, 50–57. [Google Scholar] [CrossRef]
- Ambrosio, A.; Marrucci, L.; Borbone, F.; Roviello, A.; Maddalena, P. Light-Induced Spiral Mass Transport in Azo-Polymer Films under Vortex-Beam Illumination. Nat. Commun. 2012, 3, 989. [Google Scholar] [CrossRef] [Green Version]
- Khonina, S.N.; Ustinov, A.V.; Volotovskiy, S.G.; Ivliev, N.A.; Podlipnov, V.V. Influence of optical forces induced by paraxial vortex Gaussian beams on the formation of a microrelief on carbazole-containing azopolymer films. Appl. Opt. 2020, 59, 9185–9194. [Google Scholar] [CrossRef]
- Sirenko, A.A.; Marsik, P.; Bernhard, C.; Stanislavchuk, T.N.; Kiryukhin, V.; Cheong, S.W. Terahertz vortex beam as a spectro-scopic probe of magnetic excitations. Phys. Rev. Lett. 2019, 122, 237401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Liu, X.F.; Lin, H.; Wang, D.; Cao, E.S.; Liu, S.; Nie, Z.; Jia, B. Ultrafast multi-target control of tightly focused light fields. Opto-Electron. Adv. 2022, 5, 210026. [Google Scholar] [CrossRef]
- Khonina, S.N.; Krasnov, S.V.; Ustinov, A.V.; Degtyarev, S.A.; Porfirev, A.P.; Kuchmizhak, A.; Kudryashov, S.I. Refractive twisted microaxicons. Opt. Lett. 2020, 45, 1334–1337. [Google Scholar] [CrossRef]
- Supp, S.; Jahns, J. Coaxial superposition of Bessel beams by discretized spiral axicons. J. Eur. Opt. Soc. Rapid Publ. 2018, 14, 18. [Google Scholar] [CrossRef] [Green Version]
- Degtyarev, S.A.; Porfirev, A.P.; Khonina, S.N. Photonic nanohelix generated by a binary spiral axicon. Appl. Opt. 2016, 55, B44–B48. [Google Scholar] [CrossRef]
- Balčytis, A.; Hakobyan, D.; Gabalis, M.; Žukauskas, A.; Urbonas, D.; Malinauskas, M.; Petruškevičius, R.; Brasselet, E.; Juodkazis, S. Hybrid curved nano-structured mi-cro-optical elements. Opt. Express 2016, 24, 16988–16998. [Google Scholar] [CrossRef] [Green Version]
- Khonina, S.N.; Podlipnov, V.V.; Karpeev, S.V.; Ustinov, A.V.; Volotovsky, S.G.; Ganchevskaya, S.V. Spectral control of the orbital angular momentum of a laser beam based on 3D properties of spiral phase plates fabricated for an infrared wavelength. Opt. Express 2020, 28, 18407–18417. [Google Scholar] [CrossRef] [PubMed]
- Kotlyar, V.V.; Kovalev, A.A.; Skidanov, R.V.; Khonina, S.N.; Moiseev, O.Y.; Soifer, V.A. Simple optical vortices formed by a spiral phase plate. J. Opt. Technol. 2007, 74, 686–693. [Google Scholar] [CrossRef]
- Moh, K.J.; Yuan, X.C.; Cheong, W.C.; Zhang, L.P.S.; Lin, J.; Ahluwalia, B.S.; Wang, H. High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate. Appl. Opt. 2006, 45, 1153–1161. [Google Scholar] [CrossRef]
- Li, P.; Liu, S.; Peng, T.; Xie, G.; Gan, X.; Zhao, J. Spiral autofocusing Airy beams carrying power-exponent-phase vortices. Opt. Express 2014, 22, 7598–7606. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V. Binary multi-order diffraction optical elements with variable fill factor for the formation and detection of optical vortices of arbitrary order. Appl. Opt. 2019, 58, 8227–8236. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Cottrell, D.M.; McCormick, K.R.; Albero, J.; Moreno, I. Arithmetic of focused vortex beams in three-dimensional optical lattice arrays. Appl. Opt. 2014, 53, 2040–2050. [Google Scholar] [CrossRef] [PubMed]
- Kazanskiy, N.L.; Khonina, S.N.; Karpeev, S.V.; Porfirev, A.P. Diffractive optical elements for multiplexing structured laser beams. Quantum Electron. 2020, 50, 629–635. [Google Scholar] [CrossRef]
- Fu, S.; Wang, T.; Gao, C. Perfect optical vortex array with controllable diffraction order and topological charge. J. Opt. Soc. Am. A 2016, 33, 1836–1842. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, M.; Zhu, M.; Chen, J.; Gao, X.; Ma, W.; Zhang, D. Three-dimensional shape-controllable focal spot array created by focusing vortex beams modulated by mul-ti-value pure-phase grating. Opt. Express 2014, 22, 21354–21367. [Google Scholar] [CrossRef]
- Yu, S. Potentials and challenges of using orbital angular momentum communi-cations in optical interconnects. Opt. Express 2015, 23, 3075–3087. [Google Scholar] [CrossRef] [PubMed]
- Lightman, S.; Hurvitz, G.; Gvishi, R.; Arie, A. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing. Optica 2017, 4, 605–610. [Google Scholar] [CrossRef]
- Richardson, K.A.; Kang, M.; Sisken, L.; Yadav, A.; Novak, S.; Lepicard, A.; Martin, I.; Francois-Saint-Cyr, H.; Schwarz, C.M.; Mayer, T.S.; et al. Advances in infrared gradient refractive index (GRIN) materials: A review. Opt. Eng. 2020, 59, 112602. [Google Scholar] [CrossRef]
- Baghel, A.K.; Kulkarni, S.S.; Nayak, S.K. Far-field wireless power transfer using GRIN lens metamaterial at GHz frequency. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 424–426. [Google Scholar] [CrossRef]
- Dylla-Spears, R.; Yee, T.D.; Sasan, K.; Nguyen, D.T.; Dudukovic, N.A.; Ortega, J.M.; Johnson, M.A.; Herrera, O.D.; Ryerson, F.J.; Wong, L.L. 3D printed gradient index glass optics. Sci. Adv. 2020, 6, eabc7429. [Google Scholar] [CrossRef]
- Jin, Y.; Djafari-Rouhani, B.; Torrent, D. Gradient index phononic crystals and metamaterials. Nanophotonics 2019, 8, 685–701. [Google Scholar] [CrossRef]
- Luque-González, J.M.; Halir, R.; Wangüemert-Pérez, J.G.; de-Oliva-Rubio, J.; Schmid, J.H.; Cheben, P.; Molina-Fernández, Í.; Ortega-Moñux, A. An ultracompact GRIN-lens-based spot size converter using subwavelength grating metamaterials. Laser Photonics Rev. 2019, 13, 1900172. [Google Scholar] [CrossRef] [Green Version]
- Lalanne, P.; Chavel, P. Metalenses at visible wavelengths: Past, present, perspectives. Laser Photonics Rev. 2017, 11, 1600295. [Google Scholar] [CrossRef]
- Savelyev, D.A.; Ustinov, A.V.; Khonina, S.N.; Kazanskiy, N.L. Layered lens with a linear dependence of the refractive index change. Proc. SPIE 2016, 9807, 203–209. [Google Scholar] [CrossRef]
- Park, H.Y.; Ha, S.W.; Kim, M.J.; Lee, S.G.; Park, S.G.; Lee, E.H. Ray model of an incident Gaussian beam for analyzing a micro-optical communication device with a GRIN lens system. Opt. Rev. 2005, 12, 233–236. [Google Scholar] [CrossRef]
- Guo, C.; Urner, T.; Jia, S. 3D light-field endoscopic imaging using a GRIN lens array. Appl. Phys. Lett. 2020, 116, 101105. [Google Scholar] [CrossRef]
- Chien, Y.F.; Lin, J.Y.; Yeh, P.T.; Hsu, K.J.; Tsai, Y.H.; Chen, S.K.; Chu, S.W. Dual GRIN lens two-photon endoscopy for high-speed volumetric and deep brain imaging. Biomed. Opt. Express 2021, 12, 162–172. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, B.; Barbera, G.; Hawes, S.; Zhang, Y.; Stump, K.; Baum, I.; Yang, Y.; Li, Y.; Lin, D.T. Miniscope GRIN lens system for calcium imaging of neuronal activity from deep brain structures in behaving animals. Curr. Protoc. Neurosci. 2019, 86, e56. [Google Scholar] [CrossRef]
- Chien, H.T.; Lee, C.; Chiu, H.K.; Hsu, K.C.; Chen, C.C.; Ho, J.A.A.; Chou, C. The comparison between the graded photonic crystal coupler and various coupler. J. Light. Technol. 2009, 27, 2570–2574. [Google Scholar] [CrossRef] [Green Version]
- Emkey, W.L.; Jack, C.A. Analysis and Evaluation of Graded-Index Fiber-Lenses. J. Light. Technol. 1987, 5, 1156–1164. [Google Scholar] [CrossRef]
- Kotlyar, M.I.; Triandaphilov, Y.R.; Kovalev, A.A.; Soifer, V.A.; Kotlyar, M.V.; O'Faolain, L. Photonic crystal lens for coupling two waveguides. Appl. Opt. 2009, 48, 3722–3730. [Google Scholar] [CrossRef] [PubMed]
- Kotlyar, V.V.; Kovalev, A.A.; Triandafilov, Y.R.; Nalimov, A.G. Simulation of propagation of modes in planar gradient-index hyperbolic secant waveguide. In Proceedings of the 11th International Conference on Laser and Fiber-Optical Networks Modeling (LFNM), Kharkov, Ukraine, 5–8 September 2011; pp. 1–3. [Google Scholar] [CrossRef]
- Oskooi, A.F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J.D.; Johnson, S.G. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 2010, 181, 181687. [Google Scholar] [CrossRef]
- Khonina, S.; Savelyev, D. Optimization of the Optical Microelements Using High-Performance Computer Systems. Radiophys. Quantum Electron. 2015, 57, 650–658. [Google Scholar] [CrossRef]
- Savelyev, D. Optical Vortices Sharp Focusing by Silicon Ring Gratings Using High-Performance Computer Systems. Front. Artif. Intell. Appl. 2021, 345, 300–305. [Google Scholar] [CrossRef]
- Khonina, S.N.; Savelyev, D.A.; Kazanskiy, N.L. Vortex phase elements as detectors of polarization state. Opt. Express 2015, 23, 17845–17859. [Google Scholar] [CrossRef]
- Khonina, S.N.; Savelyev, D.A. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam. J. Exp. Theor. Phys. 2013, 117, 623–630. [Google Scholar] [CrossRef]
- Savelyev, D.A.; Khonina, S.N. Characteristics of sharp focusing of vortex Laguerre-Gaussian beams. Comput. Opt. 2015, 39, 654–662. [Google Scholar] [CrossRef]
- Taflove, A.; Hagness, S.C.; Piket-May, M. Computational electromagnetics: The finite-difference time-domain method. Electr. Eng. Handb. 2005, 3, 629–670. [Google Scholar] [CrossRef]
- Rani, M.; Singh, U.; Kashyap, J.; Kapoor, A. Broadband light trapping in a-Si: H based plasmonic solar cells using Au core-Al2O3 shell composite nanospheres using FDTD method. Mater. Technol. 2022, 37, 2598–2607. [Google Scholar] [CrossRef]
- Montagnac, M.; Agez, G.; Patoux, A.; Arbouet, A.; Paillard, V. Engineered near-and far-field optical response of dielectric nanostructures using focused cylindrical vector beams. J. Appl. Phys. 2022, 131, 133101. [Google Scholar] [CrossRef]
- Hanson, J.C. Broadband rf phased array design with meep: Comparisons to array theory in two and three dimensions. Electronics 2021, 10, 415. [Google Scholar] [CrossRef]
- Savelyev, D.A. The investigation of focusing of cylindrically polarized beams with the variable height of optical elements using high-performance computer systems. Proc. SPIE 2021, 11793, 237–246. [Google Scholar] [CrossRef]
- Wang, T.; Yu, W.; Zhang, D.; Li, C.; Zhang, H.; Xu, W.; Xu, Z.; Liu, H.; Sun, Q.; Lu, Z. Lithographic fabrication of diffractive optical elements in hybrid sol-gel glass on 3-D curved surfaces. Opt. Express 2010, 18, 25102–25107. [Google Scholar] [CrossRef] [PubMed]
- Savelyev, D.A. Peculiarities of focusing circularly and radially polarized super-Gaussian beams using ring gratings with varying relief height. Comput. Opt. 2022, 46, 537–546. [Google Scholar] [CrossRef]
- Savelyev, D.A. The Comparison of Laser Radiation Focusing by Diffractive Axicons and Annular Gratings with Variable Height Using High-performance Computer Systems. In Proceedings of the 2021 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 21–25 November2021; pp. 2709–2716. [Google Scholar] [CrossRef]
- Zhuang, J.; Zhang, L.; Deng, D. Tight-focusing properties of linearly polarized circular Airy Gaussian vortex beam. Opt. Lett. 2020, 45, 296–299. [Google Scholar] [CrossRef]
- Savelyev, D.; Degtyarev, S. Features of the Optical Vortices Diffraction on Silicon Ring Gratings. Opt. Mem. Neural Netw. 2022, 31, 55–66. [Google Scholar] [CrossRef]
- Savelyev, D.A. The laser beams formation with an extended light focal segment by subwavelength silicon microaxicons. Proc. SPIE 2022, 12295, 68–75. [Google Scholar] [CrossRef]
- Savelyev, D.A.; Khonina, S.N. Maximising the longitudinal electric component at diffraction on a binary axicon linearly polarized radiation. Comput. Opt. 2012, 36, 511–517. [Google Scholar]
- Huang, K.; Shi, P.; Cao, G.W.; Li, K.; Zhang, X.B.; Li, Y.P. Vector-vortex Bessel–Gauss beams and their tightly focusing properties. Opt. Lett. 2011, 36, 888–890. [Google Scholar] [CrossRef]
- Devi, A.; De, A.K. Theoretical estimation of nonlinear optical force on dielectric spherical particles of arbitrary size under femtosecond pulsed excitation. Phys. Rev. A 2017, 96, 23856. [Google Scholar] [CrossRef]
- Devi, A.; De, A.K. Unified treatment of nonlinear optical force in laser trapping of dielectric particles of varying sizes. Phys. Rev. Res. 2021, 3, 33074. [Google Scholar] [CrossRef]
- Bonessi, D.; Bonin, K.; Walker, T. Optical forces on particles of arbitrary shape and size. J. Opt. A Pure Appl. Opt. 2007, 9, S228. [Google Scholar] [CrossRef] [Green Version]
- Skidanov, R.V.; Khonina, S.N.; Morozov, A.A.; Kotlyar, V.V. Calculating forces acting upon a spherical microobject in hypergeometric beams. Comput. Opt. 2008, 32, 39–42. [Google Scholar]
- Yang, T.; Takaki, N.; Bentley, J.; Schmidt, G.; Moore, D.T. Efficient representation of freeform gradient-index profiles for non-rotationally symmetric optical design. Opt. Express 2020, 28, 14788–14806. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, W.M.; Leger, J.R. Numerical design of three-dimensional gradient refractive index structures for beam shaping. Opt. Express 2020, 28, 32061–32076. [Google Scholar] [CrossRef] [PubMed]
- Lippman, D.H.; Schmidt, G.R. Prescribed irradiance distributions with freeform gradient-index optics. Opt. Express 2020, 28, 29132–29147. [Google Scholar] [CrossRef]
- Ji, S.; Yin, K.; Mackey, M.; Brister, A.; Ponting, M.; Baer, E. Polymeric nanolayered gradient refractive index lenses: Technology review and introduction of spherical gradient refractive index ball lenses. Opt. Eng. 2013, 52, 112105. [Google Scholar] [CrossRef]
- Campbell, S.D.; Brocker, D.E.; Werner, D.H.; Dupuy, C.; Park, S.K.; Harmon, P. Three-dimensional gradient-index optics via injketaided additive manufacturing techniques. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 605–606. [Google Scholar] [CrossRef]
- Urness, A.C.; Anderson, K.; Ye, C.; Wilson, W.L.; McLeod, R.R. Arbitrary GRIN component fabrication in optically driven diffusive photopolymers. Opt. Express 2015, 23, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Ocier, C.R.; Richards, C.A.; Bacon-Brown, D.A.; Ding, Q.; Kumar, R.; Garcia, T.J.; van de Groep, J.; Song, J.-H.; Cyphersmith, A.J.; Rhode, A.; et al. Direct laser writing of volumetric gradient index lenses and waveguides. Light Sci. Appl. 2020, 9, 163. [Google Scholar] [CrossRef]
- Li, L.; Tuan, C.C.; Zhang, C.; Chen, Y.; Lian, G.; Wong, C.P. Uniform Metal-Assisted Chemical Etching for Ultra-High-Aspect-Ratio Microstructures on Silicon. J. Microelectromech. Syst. 2018, 28, 143–153. [Google Scholar] [CrossRef]
- Machno, M.; Bogucki, R.; Szkoda, M.; Bizoń, W. Impact of the deionized water on making high aspect ratio holes in the Inconel 718 alloy with the use of electrical discharge drilling. Materials 2020, 13, 1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Jiang, F.; Wu, B.; Lv, C.; Wu, M. A one-step synthesis of ultra-long silver nanowires with ultra-high aspect ratio above 2000 and its application in flexible transparent conductive electrodes. Nanotechnology 2020, 32, 105710. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, M.; Wu, Z.; Li, H.; Hu, G.; Jiang, T.; Guo, J.; Liu, Y.; Yao, K.; Chen, Z.; et al. Tunable chiral optics in all-solid-phase reconfigurable dielectric nanostructures. Nano Lett. 2020, 21, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Sroor, H.; Huang, Y.W.; Sephton, B.; Naidoo, D.; Vallés, A.; Ginis, V.; Qiu, C.-W.; Ambrosio, A.; Capasso, F.; Forbes, A. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics 2020, 14, 498–503. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savelyev, D.A.; Karpeev, S.V. Development of 3D Microstructures for the Formation of a Set of Optical Traps on the Optical Axis. Photonics 2023, 10, 117. https://doi.org/10.3390/photonics10020117
Savelyev DA, Karpeev SV. Development of 3D Microstructures for the Formation of a Set of Optical Traps on the Optical Axis. Photonics. 2023; 10(2):117. https://doi.org/10.3390/photonics10020117
Chicago/Turabian StyleSavelyev, Dmitry A., and Sergey V. Karpeev. 2023. "Development of 3D Microstructures for the Formation of a Set of Optical Traps on the Optical Axis" Photonics 10, no. 2: 117. https://doi.org/10.3390/photonics10020117
APA StyleSavelyev, D. A., & Karpeev, S. V. (2023). Development of 3D Microstructures for the Formation of a Set of Optical Traps on the Optical Axis. Photonics, 10(2), 117. https://doi.org/10.3390/photonics10020117