Five-Band Tunable Terahertz Metamaterial Absorber Using Two Sets of Different-Sized Graphene-Based Copper-Coin-like Resonators
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Shen, Y.; Wang, J. From Terahertz Imaging to Terahertz Wireless Communications. Engineering 2023, 22, 106–124. [Google Scholar] [CrossRef]
- Roh, Y.; Lee, S.-H.; Kwak, J.; Song, H.S.; Shin, S.; Kim, Y.K.; Wu, J.W.; Ju, B.-K.; Kang, B.; Seo, M. Terahertz imaging with metamaterials for biological applications. Sens. Actuators B Chem. 2022, 352, 130993. [Google Scholar] [CrossRef]
- Yang, S.; Ding, L.; Wang, S.; Du, C.; Feng, L.; Qiu, H.; Zhang, C.; Wu, J.; Fan, K.; Jin, B.; et al. Studying Oral Tissue via Real-Time High-Resolution Terahertz Spectroscopic Imaging. Phys. Rev. Appl. 2023, 19, 034033. [Google Scholar] [CrossRef]
- Serghiou, D.; Khalily, M.; Brown, T.W.C.; Tafazolli, R. Terahertz Channel Propagation Phenomena, Measurement Techniques and Modeling for 6G Wireless Communication Applications: A Survey, Open Challenges and Future Research Directions. IEEE Commun. Surv. Tutor. 2022, 24, 1957–1996. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, T.; Liu, T.; Zhou, C.; Jiang, X.; Zhang, J. Active metamaterials and metadevices: A review. J. Phys. D Appl. Phys. 2020, 53, 503002. [Google Scholar] [CrossRef]
- Szabó, Z.; Füzi, J. Equivalence of Magnetic Metamaterials and Composites in the View of Effective Medium Theories. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Park, C.M.; Lee, S.H. Zero-reflection acoustic metamaterial with a negative refractive index. Sci. Rep. 2019, 9, 3372. [Google Scholar] [CrossRef] [PubMed]
- Padilla, W.J.; Basov, D.N.; Smith, D.R. Negative refractive index metamaterials. Mater. Today 2006, 9, 28–35. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Özkan Alkurt, F.; Awl, H.N.; Muhammadsharif, F.F.; Bakır, M.; Dalgac, S.; Karaaslan, M.; Luo, H. An ultrathin and dual band metamaterial perfect absorber based on ZnSe for the polarization-independent in terahertz range. Results Phys. 2021, 26, 104344. [Google Scholar] [CrossRef]
- Jen, Y.-J.; Liu, W.-C.; Chen, T.-K.; Lin, S.-w.; Jhang, Y.-C. Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber. Sci. Rep. 2017, 7, 3076. [Google Scholar] [CrossRef]
- Zhai, S.L.; Zhao, X.P.; Liu, S.; Shen, F.L.; Li, L.L.; Luo, C.R. Inverse Doppler Effects in Broadband Acoustic Metamaterials. Sci. Rep. 2016, 6, 32388. [Google Scholar] [CrossRef]
- Shi, X.; Lin, X.; Kaminer, I.; Gao, F.; Yang, Z.; Joannopoulos, J.D.; Soljačić, M.; Zhang, B. Superlight inverse Doppler effect. Nat. Phys. 2018, 14, 1001–1005. [Google Scholar] [CrossRef]
- Luo, W.; Wang, X.; Chen, X.; Zheng, S.; Zhao, S.; Wen, Y.; Li, L.; Zhou, J. Perfect absorption based on a ceramic anapole metamaterial. Mater. Horiz. 2023, 10, 1769–1779. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, C.; Zhu, L.; Yao, J. Graphene-based tunable terahertz plasmon-induced transparency metamaterial. Nanoscale 2016, 8, 15273–15280. [Google Scholar] [CrossRef]
- Chen, S.; Zeng, L.; Li, J.; Weng, J.; Li, J.; Guo, Z.; Xu, P.; Liu, W.; Yang, J.; Qin, Y.; et al. Tunable plasmon-induced transparency with coupled L-shape graphene metamaterial. Results Phys. 2022, 38, 105537. [Google Scholar] [CrossRef]
- Chen, T.; Yu, D.; Wu, B.; Xia, B. Weak Signals Detection by Acoustic Metamaterials-Based Sensor. IEEE Sens. J. 2021, 21, 16815–16825. [Google Scholar] [CrossRef]
- Cao, P.; Wu, Y.; Wang, Z.; Li, Y.; Zhang, J.; Liu, Q.; Cheng, L.; Niu, T. Tunable Dual-Band Ultrasensitive Stereo Metamaterial Terahertz Sensor. IEEE Access 2020, 8, 219525–219533. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Sayed, S.I.; Mahmoud, K.R.; Mubarak, R.I. Design and optimization of broadband metamaterial absorber based on manganese for visible applications. Sci. Rep. 2023, 13, 11937. [Google Scholar] [CrossRef]
- Nandakumar, S.; Trabelsi, Y.; Vasudevan, B.; Gunasekaran, S. MXene fractal-based dual-band metamaterial absorber in the visible and near-infrared regime. Opt. Quantum Electron. 2023, 55, 992. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, J.; Que, L.; Mi, G.; Zhou, Y.; Jiang, Y. A visible-infrared double band photodetector absorber. Results Phys. 2020, 18, 103283. [Google Scholar] [CrossRef]
- Hu, D.; Wang, H.y.; Zhu, Q.f. Design of Six-Band Terahertz Perfect Absorber Using a Simple U-Shaped Closed-Ring Resonator. IEEE Photonics J. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Lou, P.; He, Y.; Zhu, H.; Zhang, X.; Hu, L.; Wang, B.-X. Multiple-band terahertz perfect light absorbers enabled by using multiple metallic bars. Phys. Scr. 2021, 96, 055502. [Google Scholar] [CrossRef]
- Wen, Q.-Y.; Zhang, H.-W.; Xie, Y.-S.; Yang, Q.-H.; Liu, Y.-L. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization. Appl. Phys. Lett. 2009, 95, 241111. [Google Scholar] [CrossRef]
- Wang, J.; Lang, T.; Hong, Z.; Xiao, M.; Yu, J. Design and Fabrication of a Triple-Band Terahertz Metamaterial Absorber. Nanomaterials 2021, 11, 1110. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Liu, X.; Huang, Z.; Chen, J.; Liu, Z. Metallic Metasurfaces for Light Absorbers. IEEE Photonics Technol. Lett. 2017, 29, 47–50. [Google Scholar] [CrossRef]
- Huang, S.; Xie, Z.; Chen, W.; Lei, J.; Wang, F.; Liu, K.; Li, L. Metasurface with multi-sized structure for multi-band coherent perfect absorption. Opt. Express 2018, 26, 7066–7078. [Google Scholar] [CrossRef]
- Niu, T.; Qiu, B.; Zhang, Y.; Hirakawa, K. Control of absorption properties of ultra-thin metal–insulator–metal metamaterial terahertz absorbers. Jpn. J. Appl. Phys. 2020, 59, 120904. [Google Scholar] [CrossRef]
- Zhou, Y.; Xia, H.; Zhang, L.; Zhao, Y.; Xie, W. Temperature insensitive ultra-broadband THz metamaterial absorber based on metal square ring resonators. Results Phys. 2021, 22, 103915. [Google Scholar] [CrossRef]
- Tang, H.; Menabde, S.G.; Anwar, T.; Kim, J.; Jang, M.S.; Tagliabue, G. Photo-modulated optical and electrical properties of graphene. Nanophotonics 2022, 11, 917–940. [Google Scholar] [CrossRef]
- Chang, K.; Li, Z.; Gu, Y.; Liu, K.; Chen, K. Graphene-integrated waveguides: Properties, preparation, and applications. Nano Res. 2022, 15, 9704–9726. [Google Scholar] [CrossRef]
- Pumera, M.; Sofer, Z. Towards stoichiometric analogues of graphene: Graphane, fluorographene, graphol, graphene acid and others. Chem. Soc. Rev. 2017, 46, 4450–4463. [Google Scholar] [CrossRef]
- Armaković, S.; Armaković, S.J. Investigation of boron modified graphene nanostructures; optoelectronic properties of graphene nanoparticles and transport properties of graphene nanosheets. J. Phys. Chem. Solids 2016, 98, 156–166. [Google Scholar] [CrossRef]
- Lv, Y.; Li, H.; Coileáin, C.Ó.; Zhang, D.; Heng, C.; Chang, C.-R.; Hung, K.M.; Cheng, H.H.; Wu, H.-C. Photoelectrical properties of graphene/doped GeSn vertical heterostructures. RSC Adv. 2020, 10, 20921–20927. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Wang, L.; Mu, X.; Wang, J. The magical photoelectric and optoelectronic properties of graphene nanoribbons and their applications. J. Mater. Chem. C 2021, 9, 13600–13616. [Google Scholar] [CrossRef]
- Tiutiunnyk, A.; Duque, C.A.; Caro-Lopera, F.J.; Mora-Ramos, M.E.; Correa, J.D. Opto-electronic properties of twisted bilayer graphene quantum dots. Phys. E Low-Dimens. Syst. Nanostructures 2019, 112, 36–48. [Google Scholar] [CrossRef]
- Wang, J.; Song, J.; Mu, X.; Sun, M. Optoelectronic and photoelectric properties and applications of graphene-based nanostructures. Mater. Today Phys. 2020, 13, 100196. [Google Scholar] [CrossRef]
- Wang, J.; Yang, H.; Yang, P. Photoelectric properties of 2D ZnO, graphene, silicene materials and their heterostructures. Compos. Part B Eng. 2022, 233, 109645. [Google Scholar] [CrossRef]
- Wirth-Lima, A.J.; Alves-Sousa, P.P.; Bezerra-Fraga, W. Graphene’s photonic and optoelectronic properties—A review. Chin. Phys. B 2020, 29, 037801. [Google Scholar] [CrossRef]
- Chen, D.; Yang, J.; Huang, J.; Zhang, Z.; Xie, W.; Jiang, X.; He, X.; Han, Y.; Zhang, Z.; Yu, Y. Continuously tunable metasurfaces controlled by single electrode uniform bias-voltage based on nonuniform periodic rectangular graphene arrays. Opt. Express 2020, 28, 29306–29317. [Google Scholar] [CrossRef]
- Liu, W.; Song, Z.; Wang, W. A high-performance broadband terahertz absorber based on multilayer graphene squares. Phys. Scr. 2021, 96, 055504. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Z.; Han, X. A Transparent Tunable Broadband Microwave Absorber Based on Multi-layer Structure by Patterned Graphene. J. Phys. Conf. Ser. 2023, 2434, 012001. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, L.; Li, X.; Xiao, S. Tunable terahertz broadband absorber based on a composite structure of graphene multilayer and silicon strip array. Opt. Commun. 2019, 431, 199–202. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, K.-D. Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure. Opt. Express 2018, 26, 31693–31705. [Google Scholar] [CrossRef]
- Yue, J.; Shang, X.-j.; Zhai, X.; Wang, L.-l. Numerical Investigation of a Tunable Fano-Like Resonance in the Hybrid Construction Between Graphene Nanorings and Graphene Grating. Plasmonics 2017, 12, 523–528. [Google Scholar] [CrossRef]
- Pan, Q.; Zhang, G.; Pan, R.; Zhang, J.; Shuai, Y.; Tan, H. Tunable absorption as multi-wavelength at infrared on graphene/hBN/Al grating structure. Opt. Express 2018, 26, 18230–18237. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Ladumor, M.; Sorathiya, V.; Guo, T. Graphene based tunable grating structure. Mater. Res. Express 2019, 6, 025602. [Google Scholar] [CrossRef]
- Wu, J. Enhancement of Absorption in Graphene Strips with Cascaded Grating Structures. IEEE Photonics Technol. Lett. 2016, 28, 1332–1335. [Google Scholar] [CrossRef]
- Liu, L.; Liu, W.; Song, Z. Ultra-broadband terahertz absorber based on a multilayer graphene metamaterial. J. Appl. Phys. 2020, 128, 093104. [Google Scholar] [CrossRef]
- Gong, D.; Mei, J.; Li, N.; Shi, Y. Tunable metamaterial absorber based on VO2-graphene. Mater. Res. Express 2022, 9, 115803. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, R.; Huang, J.; Lv, Y.; Han, C.; Liu, S. Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials. Opt. Express 2019, 27, 7393–7404. [Google Scholar] [CrossRef] [PubMed]
- Shoghi Badr, N.; Moradi, G. Design and analysis of graphene-based THz absorber using multi-layer structure based on increasing profile for conductivity of the graphene layers. Optik 2019, 198, 163239. [Google Scholar] [CrossRef]
- Wang, B.; Zeng, Q.; Xiao, S.; Xu, C.; Xiong, L.; Lv, H.; Du, J.; Yu, H. Low-power, ultrafast, and dynamic all-optical tunable plasmon induced transparency in two stub resonators side-coupled with a plasmonic waveguide system. J. Phys. D Appl. Phys. 2017, 50, 455107. [Google Scholar] [CrossRef]
- Liu, C.; Su, W.; Liu, Q.; Lu, X.; Wang, F.; Sun, T.; Chu, P.K. Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt. Express 2018, 26, 9039–9049. [Google Scholar] [CrossRef] [PubMed]
- Demetriou, G.; Bookey, H.T.; Biancalana, F.; Abraham, E.; Wang, Y.; Ji, W.; Kar, A.K. Nonlinear optical properties of multilayer graphene in the infrared. Opt. Express 2016, 24, 13033–13043. [Google Scholar] [CrossRef]
- Hanson, G.W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 2008, 103, 064302. [Google Scholar] [CrossRef]
- Chen, P.; Tang, M.; Liu, A.; Hu, Y.; Li, L.; Chen, W.; Su, Y.; Huang, Y.; Zheng, J.; Liu, K.; et al. Polarization-sensitive tunable multi-band terahertz absorber based on single-layered graphene rings. J. Opt. Soc. Am. B 2021, 38, 3000–3008. [Google Scholar] [CrossRef]
- Mou, N.; Sun, S.; Dong, H.; Dong, S.; He, Q.; Zhou, L.; Zhang, L. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Opt. Express 2018, 26, 11728–11736. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, B.; Yan, M.; Wu, B.; Cheng, P.; Sun, Z. Tunable terahertz perfect absorber with a graphene-based double split-ring structure. Opt. Mater. Express 2021, 11, 73–79. [Google Scholar] [CrossRef]
- Biabanifard, S. A graphene-based dual-band THz absorber design exploiting the impedance-matching concept. J. Comput. Electron. 2021, 20, 38–48. [Google Scholar] [CrossRef]
- Mei, P.; Zhang, S.; Lin, X.Q.; Pedersen, G.F. A Triple-Band Absorber with Wide Absorption Bandwidths Using an Impedance Matching Theory. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 521–525. [Google Scholar] [CrossRef]
- Smith, D.R.; Vier, D.C.; Koschny, T.; Soukoulis, C.M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 2005, 71, 036617. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, W.; Cui, Q.; Wang, Y.; Yu, J. Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device. Opt. Express 2020, 28, 40060–40074. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Chen, S.; Yu, P.; Duan, X.; Xie, B.; Tian, J. Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl. Phys. Lett. 2013, 103, 203112. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Qin, X.; Zhao, Q.; Duan, G.; Wang, B.-X. Five-Band Tunable Terahertz Metamaterial Absorber Using Two Sets of Different-Sized Graphene-Based Copper-Coin-like Resonators. Photonics 2024, 11, 225. https://doi.org/10.3390/photonics11030225
Wang J, Qin X, Zhao Q, Duan G, Wang B-X. Five-Band Tunable Terahertz Metamaterial Absorber Using Two Sets of Different-Sized Graphene-Based Copper-Coin-like Resonators. Photonics. 2024; 11(3):225. https://doi.org/10.3390/photonics11030225
Chicago/Turabian StyleWang, Jieru, Xuefeng Qin, Qian Zhao, Guiyuan Duan, and Ben-Xin Wang. 2024. "Five-Band Tunable Terahertz Metamaterial Absorber Using Two Sets of Different-Sized Graphene-Based Copper-Coin-like Resonators" Photonics 11, no. 3: 225. https://doi.org/10.3390/photonics11030225
APA StyleWang, J., Qin, X., Zhao, Q., Duan, G., & Wang, B. -X. (2024). Five-Band Tunable Terahertz Metamaterial Absorber Using Two Sets of Different-Sized Graphene-Based Copper-Coin-like Resonators. Photonics, 11(3), 225. https://doi.org/10.3390/photonics11030225