Asymmetrical Three-Dimensional Conformal Imaging Lens
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Methods
function particle_trajectory() |
% Define constants |
a = 1; |
b = 2; |
c = 2; |
% Initial conditions |
x0 = 1; |
y0 = 1; |
z0 = 1; |
kx0 = −0.5; |
ky0 = 1; |
kz0 = 0; |
% Time span |
tspan = [0 100]; |
% Initial state vector |
initial_conditions = [x0 y0 z0 kx0 ky0 kz0]; |
% Solve the system of differential equations |
[t, sol] = ode45(@(t, vars) odefunc(t, vars, a, b, c), tspan, initial_conditions); |
% Extract solutions |
x = sol(:, 1); |
y = sol(:, 2); |
z = sol(:, 3); |
% Plot the trajectory |
plot3(x, y, z, ‘r’, ‘LineWidth’, 2); |
xlabel(‘x’); |
ylabel(‘y’); |
zlabel(‘z’); |
grid on; |
axis equal; |
box on; |
title(‘Particle Trajectory’); |
end |
function dvarsdt = odefunc(~, vars, a, b, c) |
% Unpack variables |
x = vars(1); |
y = vars(2); |
z = vars(3); |
kx = vars(4); |
ky = vars(5); |
kz = vars(6); |
% Refractive index |
n = sqrt(2 − (x/a)^2 − (y/b)^2 − (z/c)^2); |
% Magnitude of the wave vector |
k_mag = sqrt(kx^2 + ky^2 + kz^2); |
% Derivatives of the refractive index |
Dx = −x/(a^2 * n); |
Dy = −y/(b^2 * n); |
Dz = −z/(c^2 * n); |
% Define the differential equations |
dxdt = 1/n * kx/k_mag; |
dydt = 1/n * ky/k_mag; |
dzdt = 1/n * kz/k_mag; |
dkxdt = k_mag/n^2 * Dx; |
dkydt = k_mag/n^2 * Dy; |
dkzdt = k_mag/n^2 * Dz; |
% Return the derivatives |
dvarsdt = [dxdt; dydt; dzdt; dkxdt; dkydt; dkzdt]; |
end |
References
- Pendry, J.B.; David, S.; David, R.S. Controlling electromagnetic fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, U. Optical conformal mapping. Science 2006, 312, 1777–1780. [Google Scholar] [CrossRef]
- Chen, H.; Hou, B.; Chen, S.; Ao, X.; Wen, W.; Chan, C.T. Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. Phys. Rev. Lett. 2009, 102, 183903. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chan, C.T. Transformation media that rotate electromagnetic fields. Appl. Phys. Lett. 2007, 90, 241105. [Google Scholar] [CrossRef]
- Zang, X.; Jiang, C. Two-dimensional elliptical electromagnetic superscatterer and superabsorber. Opt. Express 2010, 18, 6891–6899. [Google Scholar] [CrossRef] [PubMed]
- Narimanov, E.E.; Kildishev, A.V. Optical black hole: Broadband omnidirectional light absorber. Appl. Phys. Lett. 2009, 95, 041106. [Google Scholar] [CrossRef]
- Greenleaf, A.; Kurylev, Y.; Lassas, M.; Uhlmann, G. Electromagnetic Wormholes and Virtual Magnetic Monopoles from Metamaterials. Phys. Rev. Lett. 2007, 99, 183901. [Google Scholar] [CrossRef]
- Kadic, M.; Dupont, G.; Enoch, S.; Guenneau, S. Invisible waveguides on metal plates for plasmonic analogs of electromagnetic wormholes. Phys. Rev. A 2014, 90, 043812. [Google Scholar] [CrossRef]
- Sheng, C.; Bekenstein, R.; Liu, H.; Zhu, S.; Segev, M. Wavefront shaping through emulated curved space in waveguide settings. Nat. Commun. 2016, 7, 10747. [Google Scholar] [CrossRef]
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966. [Google Scholar] [CrossRef]
- Leonhardt, U. Perfect imaging without negative refraction. New J. Phys. 2009, 11, 093040. [Google Scholar] [CrossRef]
- Blaikie, R.J. Comment on Perfect imaging without negative refraction. New J. Phys. 2010, 12, 058001. [Google Scholar] [CrossRef]
- Leonhardt, U. Reply to comment on ‘Perfect imaging without negative refraction’. New J. Phys. 2010, 12, 058002. [Google Scholar] [CrossRef]
- Kinsler, P.; Favaro, A. Comment on Reply to comment on “Perfect imaging without negative refraction”. New J. Phys. 2011, 13, 028001. [Google Scholar] [CrossRef]
- Leonhardt, U. Reply to Comment on Reply to Comment on Perfect Imaging without Negative Refraction. arXiv 2010, arXiv:1010.4161. [Google Scholar]
- Leonhardt, U.; Philbin, T.G. Perfect imaging with positive refraction in three dimensions. Phys. Rev. A 2010, 81, 011804. [Google Scholar] [CrossRef]
- Badri, S.H.; Gilarlue, M.M.; Taghipour-Farshi, H. Rectangular Maxwells fisheye lens via transformation optics as a crossing medium for dissimilar waveguides. JOSB 2020, 37, 2437–2443. [Google Scholar] [CrossRef]
- Mateo-Segura, C.; Dyke, A.; Dyke, H.; Haq, S.; Hao, Y. Flat Luneburg lens via transformation optics for directive antenna applications. IEEE Trans. Antennas Propag. 2014, 62, 1945–1953. [Google Scholar] [CrossRef]
- Synge, J.L. The absolute optical instrument. Trans. Am. Math. Soc. 1938, 44, 32–46. [Google Scholar] [CrossRef]
- Zhou, Y.; Hao, Z.; Zhao, P.; Chen, H. Solid Immersion Maxwell’s Fish-Eye Lens Without Drain. Phys. Rev. Appl. 2022, 17, 034039. [Google Scholar] [CrossRef]
- Li, D.; Zhu, S.; Zhang, M.; Nian, Y.; Zhao, M.; Chen, X.; Yi, J. Synthetic Beam Scanning and Super-Resolution Coincidence Imaging Based on Randomly Excited Antenna Array. IEEE Trans. Geosci. Remote Seng. 2023, 61, 2002414. [Google Scholar] [CrossRef]
- Lin, M.; Ratni, B.; Qi, P.; Yi, J.; André, L.; Shah, N.B. Flexible Generation and Manipulation of Microwave Bottle Beam Using a Reconfigurable Metamirror. Adv. Photo. Res. 2023, 4, 2300156. [Google Scholar] [CrossRef]
- Miñano, J.C. Perfect imaging in a homogeneous three-dimensional region. Opt. Express 2006, 14, 9627–9635. [Google Scholar] [CrossRef]
- Chen, H. Imaging along conformal curves. Phys. Rev. A 2018, 98, 043843. [Google Scholar] [CrossRef]
- Chen, J.; Su, G.; Xu, S.; Chen, M.; Liu, Y.; Fang, D.; Zhou, J. Ultrabroadband and Multifunctional Achromatic Mikaelian Lens on an Elastic Plate. Phys. Rev. Appl. 2022, 18, 064047. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, W. The Morse lens. Chin. Opt. Lett. 2020, 18, 062403. [Google Scholar] [CrossRef]
- Tyc, T.; Danner, A. Frequency spectra of absolute optical instruments. New J. Phys. 2012, 14, 085023. [Google Scholar] [CrossRef]
- Tyc, T. Spectra of absolute instruments from the WKB approximation. New J. Phys. 2013, 15, 065005. [Google Scholar] [CrossRef]
- Tyc, T.; Danner, A. Absolute optical instruments, classical superintegrability, and separability of the Hamilton-Jacobi equation. Phys. Rev. A 2017, 96, 053838. [Google Scholar] [CrossRef]
- Tyc, T.; Herzánová, L.; Šarbort, M.; Bering, K. Absolute instruments and perfect imaging in geometrical optics. New J. Phys. 2011, 13, 115004. [Google Scholar] [CrossRef]
- Fonseca, N.J.G.; Liao, Q.; Quevedo-Teruel, O. Equivalent planar lens ray-tracing model to design modulated geodesic lenses using non-Euclidean transformation optics. IEEE Trans. Antennas Prag. 2020, 68, 3410–3422. [Google Scholar] [CrossRef]
- Chen, Q.; Horsley, S.A.R.; Fonseca, N.J.G.; Tyc, T.; Quevedo-Teruel, O. Double-layer geodesic and gradient-index lenses. Nat. Commun. 2022, 13, 2354. [Google Scholar] [CrossRef]
- Šarbort, M.; Tyc, T. Spherical media and geodesic lenses in geometrical optics. J. Opt. 2012, 14, 075705. [Google Scholar] [CrossRef]
- Tyc, T.; Dao, H.L.; Danner, A.J. Absolute optical instruments without spherical symmetry. Phys. Rev. A 2015, 92, 053827. [Google Scholar] [CrossRef]
- Blair, D.E. Inversion Theory and Conformal Mapping; American Mathematical Society: Ann Arbor, MI, USA, 2000. [Google Scholar]
- Junqueira, M.A.; Gabrielli, L.H.; Beltrán-Mejía, F.; Spadoti, D.H. Three-dimensional quasi-conformal transformation optics through numerical optimization. Opt. Express 2016, 24, 16465. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.G.; Teixeira, P.A.; Gabrielli, L.H.; Beltrán-Mejía, F.; Spadoti, D.H. Full three-dimensional isotropic carpet cloak designed by quasi-conformal transformation optics. Opt. Express 2017, 25, 23517–23522. [Google Scholar] [CrossRef]
- Leonhardt, U.; Philbin, T. Geometry and Light: The Science of Invisibility; Courier Corporation: North Chelmsford, MA, USA, 2010. [Google Scholar]
- Kravtsov, A.Y.; Orlov, Y.I. Geometrical Optics of Inhomogeneous Media; Springer: Berlin/Heidelberg, Germany; Moscow, Russia, 1990. [Google Scholar]
- Schurig, D.; Pendry, J.B. Smith D R. Calculation of material properties and ray tracing in transformation media. Opt. Express 2006, 14, 9794–9804. [Google Scholar] [CrossRef]
- Peng, H.; Han, H.; He, P.; Xia, K.; Zhang, J.; Li, X.C.; Bao, Q.L.; Chen, Y.; Chen, H. The Luneburg–Lissajous lens. EPL 2020, 129, 64001. [Google Scholar] [CrossRef]
- Foster, R.; Nagarkoti, D.; Gao, J.; Benjamin, V.; Felix, N.; Spooner, C.; Haq, S.; Yang, H. Beam-steering performance of flat Luneburg lens at 60 GHz for future wireless communications. Int. J. Antennas Propag. 2017, 2017, 7932434. [Google Scholar] [CrossRef]
- Xue, L.; Fusco, V.F. 24 GHz automotive radar planar Luneburg lens. IET Microw. Antennas Propag. 2007, 1, 624–628. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Zhang, Y.L.; Zheng, M.L.; Dong, X.Z.; Duan, X.M.; Zhao, Z.S. Three-dimensional Luneburg lens at optical frequencies. Laser Photon. Rev. 2016, 10, 665–672. [Google Scholar] [CrossRef]
- Rebecca, D.S.; Timothy, D.Y.; Koroush, S.; Du, T.N.; Nikola, A.D.; Jason, M.O.; Michael, A.J.; Oscar, D.H.; Frederick, J.R.; Lana, L.W. 3D printed gradient index glass optics. Sci. Adv. 2020, 6, 47. [Google Scholar]
- Xu, C.; Dana, I.; Wang, L.G.; Sebbah, P. Light chaotic dynamics in the transformation from curved to flat surfaces. Proc. Natl. Acad. Sci. USA 2022, 119, e2112052119. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, D.; Ge, Y.; Xiao, W.; Chen, H. Asymmetrical Three-Dimensional Conformal Imaging Lens. Photonics 2024, 11, 543. https://doi.org/10.3390/photonics11060543
Gong D, Ge Y, Xiao W, Chen H. Asymmetrical Three-Dimensional Conformal Imaging Lens. Photonics. 2024; 11(6):543. https://doi.org/10.3390/photonics11060543
Chicago/Turabian StyleGong, Desen, Yixiao Ge, Wen Xiao, and Huanyang Chen. 2024. "Asymmetrical Three-Dimensional Conformal Imaging Lens" Photonics 11, no. 6: 543. https://doi.org/10.3390/photonics11060543
APA StyleGong, D., Ge, Y., Xiao, W., & Chen, H. (2024). Asymmetrical Three-Dimensional Conformal Imaging Lens. Photonics, 11(6), 543. https://doi.org/10.3390/photonics11060543