A Multi-Parameter Tunable and Compact Plasmon Modulator in the Near-Infrared Spectrum
Abstract
:1. Introduction
2. Model and Simulation
3. Results and Discussion
3.1. Modulation in Propagating Distance
3.2. Modulation in Amplitude
3.3. Modulation in Optical Transmission
3.4. Modulation in Wavelength
3.5. Modulation in Phase
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef]
- Melikyan, A.; Alloatti, L.; Muslija, A.; Hillerkuss, D.; Schindler, P.C.; Li, J.; Palmer, R.; Korn, D.; Muehlbrandt, S.; van Thourhout, D.; et al. High-speed plasmonic phase modulators. Nat. Photonics 2014, 8, 229–233. [Google Scholar] [CrossRef]
- Wei, H.; Wang, Z.; Tian, X.; Käll, M.; Xu, H. Cascaded logic gates in nanophotonic plasmon network. Nat. Commun. 2011, 2, 387. [Google Scholar] [CrossRef]
- Zhu, L.; Fan, Y.; Wu, S.; Yu, L.; Zhang, K.; Zhang, Y. Electrical control of terahertz polarization by graphene microstructure. Opt. Commun. 2015, 346, 120–123. [Google Scholar] [CrossRef]
- Thijssen, R.; Verhagen, E.; Kippenberg, T.J.; Polman, A. A Plasmon nanomechanical coupling for nanoscale transduction. Nano Lett. 2013, 13, 3293–3297. [Google Scholar] [CrossRef]
- Schuller, J.A.; Barnard, E.S.; Cai, W.; Jun, Y.C.; White, J.S.; Brongersma, M.L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204. [Google Scholar] [CrossRef]
- Sorger, V.J.; Ye, Z.; Oulton, R.F.; Wang, Y.; Bartal, G.; Yin, X.; Zhang, X. Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nat. Commun. 2011, 2, 331. [Google Scholar] [CrossRef]
- Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193. [Google Scholar] [CrossRef]
- Correia, R.; Boaventura, A.; Carvalho, N.B. Quadrature amplitude backscatter modulator for passive wireless sensors in IoT applications. IEEE Trans. Microw. Theory Tech. 2017, 65, 1103–1110. [Google Scholar] [CrossRef]
- Moon, S.-M.; Yun, S.; Yom, I.-B.; Lee, H.L. Phased array shaped-beam satellite antenna with boosted-beam control. IEEE Trans. Antennas Propag. 2019, 67, 7633–7636. [Google Scholar] [CrossRef]
- Han, S.; Kim, S.; Kim, S.; Low, T.; Brar, V.W.; Jang, M.S. Complete complex amplitude modulation with electronically tunable graphene plasmonic metamolecules. ACS Nano 2020, 14, 1166–1175. [Google Scholar] [CrossRef]
- Su, D.; Wang, X.; Shang, G.; Ding, X.; Burokur, S.N.; Liu, J.; Li, H. Amplitude-phase modulation metasurface hologram with inverse angular spectrum diffraction theory. J. Phys. D Appl. Phys. 2022, 55, 235102. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, J.; Liu, J.; Li, B.; Zhou, C.; Sheng, Z. Active and Smart Terahertz Electro-Optic Modulator Based on VO2 Structure. ACS Appl. Mater. Interfaces 2022, 14, 26923–26930. [Google Scholar] [CrossRef]
- Najafi Hajivar, M.; Hosseini-Farzad, M. Buried and ridge graphene-based silicon waveguides for broadband polarization-insensitive amplitude and phase modulators. arXiv 2019, arXiv:1912.06801. [Google Scholar] [CrossRef]
- Forouzmand, A.; Mosallaei, H. Electro-optical amplitude and phase modulators based on tunable guided-mode resonance effect. ACS Photonics 2019, 6, 2860–2869. [Google Scholar] [CrossRef]
- Hu, X.; Lu, C.; Zhao, X.; Gu, Y.; Lu, M.; Sun, D. A multi-parameter tunable plasmon modulator. Sci. Rep. 2023, 13, 11483. [Google Scholar] [CrossRef]
- Wang, B.; Blaize, S.; Seok, J.; Kim, S.; Yang, H.; Salas-Montiel, R. Plasmonic-Based Subwavelength Graphene-on-hBN Modulator on Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–6. [Google Scholar] [CrossRef]
- Vinnakota, R.K.; Genov, D.A. Active Control of Charge Density Waves at Degenerate Semiconductor Interfaces. Sci. Rep. 2017, 7, 10778. [Google Scholar] [CrossRef]
- Le, K.Q. ITO-based Electro-Optical Modulator Integrated in Silicon-On-Insulator Waveguide Using Surface Plasmon Interference. Phys. B Condens. Matter 2021, 602, 412313. [Google Scholar] [CrossRef]
- Zhu, S.; Yu, Z.; Liu, L.; Yang, C.; Cao, H.; Xi, X.; Li, J.; Zhao, L. Enhancing the spontaneous emission rate by modulating carrier distribution in GaN-based surface plasmon light-emitting diodes. Opt. Express 2017, 25, 9617–9627. [Google Scholar] [CrossRef]
- Kelley, M.; Lee, A.; Mozumdar, M.; Dajani, K.; Ahmed, A. Design and modeling of subpicosecond all-optical modulator using the nonlinear response of indium tin oxide. J. Opt. Soc. Am. B 2019, 36, F149–F153. [Google Scholar] [CrossRef]
- Xu, X.; Chen, W.; Zhang, S.; Liu, C.; Sun, R.; Li, Z.; Zhang, B. Numerical Analysis for a P-Drift Region N-IGBT With Enhanced Dynamic Electric Field Modulation Effect. IEEE Trans. Electron. Devices 2022, 69, 3277–3282. [Google Scholar] [CrossRef]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, Y.; Ling, L.; Sheng, Z.; Cheng, S.; Yi, Z.; Wu, P.; Zeng, Q.; Tang, B.; Ahmad, S. The tunable absorber films of grating structure of AlCuFe quasicrystal with high Q and refractive index sensitivity. Surf. Interfaces 2024, 48, 104248. [Google Scholar] [CrossRef]
- Liang, S.; Xu, F.; Li, W.; Yang, W.; Cheng, S.; Yang, H.; Chen, J.; Yi, Z.; Jiang, P. Tunable smart mid infrared thermal control emitter based on phase change material VO2 thin film. Appl. Therm. Eng. 2023, 232, 121074. [Google Scholar] [CrossRef]
- Carrillo-Delgado, C.; Arano-Martínez, J.A.; Vidales-Hurtado, M.A.; Torres-Torres, D.; Martínez-González, C.L.; Torres-Torres, C. Electrically induced directional self-focusing in electrochromic NiO thin solid films. J. Mater. Sci. Mater. Electron. 2023, 34, 953. [Google Scholar] [CrossRef]
- Feigenbaum, E.; Diest, K.; Atwater, H.A. Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies. Nano Lett. 2010, 10, 2111–2116. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wang, R.; Bao, F.; Ye, J.; Lin, H.; Zhu, H.; Wan, M.; Yang, H.; Shen, K.; Mai, Y. Preparation and investigation of ITO/metal/ITO electrodes for electrochromic application. Opt. Mater. 2022, 133, 112848. [Google Scholar] [CrossRef]
- Lee, G.; Park, E.; Nguyen, V.T.; Heo, S.; Nguyen, N.A.; Larina, L.L.; Yoon, I.; Choi, H.S. Plasma-assisted ITO sol coating for optimizing the optoelectronic properties of ITO glass. Appl. Surf. Sci. 2021, 551, 149414. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Wang, H.; Yang, S.; Lu, C.; Zhao, X.; Lu, M. A Multi-Parameter Tunable and Compact Plasmon Modulator in the Near-Infrared Spectrum. Photonics 2024, 11, 530. https://doi.org/10.3390/photonics11060530
Hu X, Wang H, Yang S, Lu C, Zhao X, Lu M. A Multi-Parameter Tunable and Compact Plasmon Modulator in the Near-Infrared Spectrum. Photonics. 2024; 11(6):530. https://doi.org/10.3390/photonics11060530
Chicago/Turabian StyleHu, Xuefang, Hongfei Wang, Sisi Yang, Changgui Lu, Xiangyue Zhao, and Mengjia Lu. 2024. "A Multi-Parameter Tunable and Compact Plasmon Modulator in the Near-Infrared Spectrum" Photonics 11, no. 6: 530. https://doi.org/10.3390/photonics11060530
APA StyleHu, X., Wang, H., Yang, S., Lu, C., Zhao, X., & Lu, M. (2024). A Multi-Parameter Tunable and Compact Plasmon Modulator in the Near-Infrared Spectrum. Photonics, 11(6), 530. https://doi.org/10.3390/photonics11060530