Independently Accessible Dual-Band Barrier Infrared Detector Using Type-II Superlattices
Abstract
:1. Introduction
2. Materials and Methods
2.1. DBIRD Design
2.2. Material Growth and Device-Processing Technology
2.3. DBIRD Modeling and Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DBIRD | Dual-band Barrier IR Detector |
T2SLs | Type-II Superlattices |
BC, RC | Blue, Red Channel |
HJs | Heterojunctions |
VBO | Valence Band Offset |
CBO | Conduction Band Offset |
MW/LW | Middle and long wavelength |
BCA | Blue Channel Absorber |
RCA | Red Channel Absorber |
EB | Electron Barrier |
HB | Hole Barrier |
ECL | Electron Collection Layer |
HCL | Hole Collection Layer |
SRH | Shockley–Read–Hall |
G-R | Generation–Recombination |
ROIC | Read-Out Integrated Circuit |
QE | Quantum Efficiency |
SCT | Spectral Cross-talk |
References
- Haddadi, A.; Dehzangi, A.; Chevallier, R.; Adhikary, S.; Razeghi, M. Bias–selectable nBn dual–band long–/very long–wavelength infrared photodetectors based on InAs/InAs1−xSbx/AlAs1−xSbx type–II superlattices. Sci. Rep. 2017, 7, 3379. [Google Scholar] [CrossRef]
- Ariyawansa, G.; Grupen, M.; Duran, J.M.; Scheihing, J.E.; Nelson, T.R.; Eismann, M.T. Design and modeling of InAs/GaSb type II superlattice based dual-band infrared detectors. J. Appl. Phys. 2012, 111, 073107. [Google Scholar] [CrossRef]
- Plis, E.; Myers, S.; Ramirez, D.; Smith, E.; Rhiger, D.; Chen, C.; Phillips, J.; Krishna, S. Dual color longwave InAs/GaSb type-II strained layer superlattice detectors. Infrared Phys. Technol. 2015, 70, 93–98. [Google Scholar] [CrossRef]
- Razeghi, M.; Dehzangi, A.; Li, J. Multi-band SWIR-MWIR-LWIR Type-II superlattice based infrared photodetector. Results Opt. 2021, 2, 100054. [Google Scholar] [CrossRef]
- Blazejewski, E.R.; Arias, J.M.; Williams, G.M.; McLevige, W.; Zandian, M.; Pasko, J. Bias-switchable dual-band HgCdTe infrared photodetector. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1992, 10, 1626–1632. [Google Scholar] [CrossRef]
- Reine, M.; Norton, P.; Starr, R.; Weiler, M.H.; Kestigian, M.; Musicant, B.L.; Mitra, P.; Schimert, T.; Case, F.C.; Bhat, L.; et al. Independently accessed back-to-back HgCdTe hotodiodes: A new dual-band infrared detector. J. Electron. Mater. 1995, 24, 669–679. [Google Scholar] [CrossRef]
- Kopytko, M.; Gawron, W.; Kębłowski, A.; Stępień, D.; Martyniuk, P.; Jóźwikowski, K. Numerical analysis of HgCdTe dual-band infrared detector. Opt. Quantum Electron. 2019, 51, 62. [Google Scholar] [CrossRef]
- Klipstein, P.C.; Livneh, Y.; Glozman, A.; Grossman, S.; Klin, O.; Snapi, N.; Weiss, E. Modeling InAs/GaSb and InAs/InAsSb Superlattice Infrared Detectors. J. Electron. Mater. 2014, 43, 2984–2990. [Google Scholar] [CrossRef]
- Gautam, N.; Myers, S.; Barve, A.V.; Klein, B.; Smith, E.P.; Rhiger, D.R.; Kim, H.S.; Tian, Z.B.; Krishna, S. Barrier Engineered Infrared Photodetectors Based on Type-II InAs/GaSb Strained Layer Superlattices. IEEE J. Quantum Electron. 2013, 49, 211–217. [Google Scholar] [CrossRef]
- Ariyawansa, G.; Perera, A.G.U.; Huang, G.; Bhattacharya, P. Wavelength agile superlattice quantum dot infrared photodetector. Appl. Phys. Lett. 2009, 94, 131109. [Google Scholar] [CrossRef]
- Maimon, S.; Wicks, G.W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 2006, 89, 151109. [Google Scholar] [CrossRef]
- Ting, D.Z.Y.; Hill, C.J.; Soibel, A.; Keo, S.A.; Mumolo, J.M.; Nguyen, J.; Gunapala, S.D. A high-performance long wavelength superlattice complementary barrier infrared detector. Appl. Phys. Lett. 2009, 95, 023508. [Google Scholar] [CrossRef]
- Martyniuk, P.; Kopytko, M.; Rogalski, A. Barrier infrared detectors. Opto-Electron. Rev. 2014, 22, 127–146. [Google Scholar] [CrossRef]
- Wróbel, J.; Martyniuk, P.; Plis, E.; Madejczyk, P.; Gawron, W.; Krishna, S.; Rogalski, A. Dark current modeling of MWIR type-II superlattice detectors. In Proceedings of the Infrared Technology and Applications XXXVIII, Baltimore, MD, USA, 23–27 April 2012; Volume 8353, p. 835316. [Google Scholar] [CrossRef]
- Wróbel, J.; Plis, E.; Gawron, W.; Motyka, M.; Martyniuk, P.; Madejczyk, P.; Kowalewski, A.; Dyksik, M.; Misiewicz, J.; Krishna, S.; et al. Analysis of temperature dependence of dark current mechanisms in mid-wavelength infrared pin type-II superlattice photodiodes. Sens. Mater. 2014, 26, 235–244. [Google Scholar]
- Rehm, R.; Walther, M.; Rutz, F.; Schmitz, J.; Wörl, A.; Masur, J.M.; Scheibner, R.; Wendler, J.; Ziegler, J. Dual-Color InAs/GaSb Superlattice Focal-Plane Array Technology. J. Electron. Mater. 2011, 40, 1738–1743. [Google Scholar] [CrossRef]
- Rehm, R.; Walther, M.; Schmitz, J.; Wauro, M.; Luppold, W.; Niemasz, J.; Rutz, F.; Wörl, A.; Masur, J.M.; Kirste, L.; et al. Substrate removal of dual-colour InAs/GaSb superlattice focal plane arrays. Phys. Status Solidi C 2012, 9, 318–321. [Google Scholar] [CrossRef]
- Rehm, R.; Masur, M.; Schmitz, J.; Daumer, V.; Niemasz, J.; Vandervelde, T.; DeMeo, D.; Luppold, W.; Wauro, M.; Wörl, A.; et al. InAs/GaSb superlattice infrared detectors. Infrared Phys. Technol. 2013, 59, 6–11. [Google Scholar] [CrossRef]
- Hoang, A.M.; Chen, G.; Haddadi, A.; Razeghi, M. Demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices. Appl. Phys. Lett. 2013, 102, 011108. [Google Scholar] [CrossRef]
- Martyniuk, P.; Wróbel, J.; Plis, E.; Madejczyk, P.; Kowalewski, A.; Gawron, W.; Krishna, S.; Rogalski, A. Performance modeling of MWIR InAs/GaSb/B–Al0.2Ga0.8Sb type-II superlattice nBn detector. Semicond. Sci. Technol. 2012, 27, 055002. [Google Scholar] [CrossRef]
- Delmas, M.; Rodriguez, J.B.; Christol, P. Electrical modeling of InAs/GaSb superlattice mid-wavelength infrared pin photodiode to analyze experimental dark current characteristics. J. Appl. Phys. 2014, 116, 113101. [Google Scholar] [CrossRef]
- Taghipour, Z.; Lee, S.; Myers, S.; Steenbergen, E.; Morath, C.; Cowan, V.; Mathews, S.; Balakrishnan, G.; Krishna, S. Temperature-Dependent Minority-Carrier Mobility in p-Type InAs/GaSb Type-II-Superlattice Photodetectors. Phys. Rev. Appl. 2019, 11, 024047. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, J.; Wang, F.; Zhou, Y.; Bai, Z.; Xu, J.; Xu, Q.; Jin, C.; He, L. MBE growth and characterization of type-II InAs/GaSb superlattices LWIR materials and photodetectors with barrier structures. J. Cryst. Growth 2017, 477, 277–282. [Google Scholar] [CrossRef]
- Jasik, A.; Sankowska, I.; Regiński, K.; Machowska-Podsiadło, E.; Wawro, A.; Wzorek, M.; Kruszka, R.; Jakieła, R.; Kubacka-Traczyk, J.; Motyka, M.; et al. MBE growth of type II InAs/GaSb superlattices on GaSb buffer. In Crystal Growth: Theory, Mechanisms and Morphology; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2012. [Google Scholar]
- Alchaar, R.; Rodriguez, J.B.; Höglund, L.; Naureen, S.; Christol, P. Characterization of an InAs/GaSb type-II superlattice barrier photodetector operating in the LWIR domain. AIP Adv. 2019, 9, 055012. [Google Scholar] [CrossRef]
- Chaghi, R.; Cervera, C.; Aït-Kaci, H.; Grech, P.; Rodriguez, J.B.; Christol, P. Wet etching and chemical polishing of InAs/GaSb superlattice photodiodes. Semicond. Sci. Technol. 2009, 24, 065010. [Google Scholar] [CrossRef]
- Bouschet, M.; Zavala-Moran, U.; Arounassalame, V.; Alchaar, R.; Bataillon, C.; Ribet-Mohamed, I.; de Anda-Salazar, F.; Perez, J.P.; Péré-Laperne, N.; Christol, P. Influence of Pixel Etching on Electrical and Electro-Optical Performances of a Ga-Free InAs/InAsSb T2SL Barrier Photodetector for Mid-Wave Infrared Imaging. Photonics 2021, 8, 194. [Google Scholar] [CrossRef]
- Lee, H.J.; Eom, J.H.; Jung, H.C.; Kang, K.K.; Ryu, S.M.; Jang, A.; Kim, J.G.; Kim, Y.H.; Jung, H.; Kim, S.H.; et al. Design and performance of dual-band MWIR/LWIR focal plane arrays based on a type-II superlattice nBn structure. Opto-Electron. Rev. 2023, 31, e144560. [Google Scholar] [CrossRef]
- Dente, G.C.; Tilton, M.L. Comparing pseudopotential predictions for InAs/GaSb superlattices. Phys. Rev. B 2002, 66, 165307. [Google Scholar] [CrossRef]
- Moazzami, K.; Phillips, J.; Lee, D.; Krishnamurthy, S.; Benoit, G.; Fink, Y.; Tiwald, T. Detailed study of above bandgap optical absorption in HgCdTe. J. Electron. Mater. 2005, 34, 773–778. [Google Scholar] [CrossRef]
- Asplund, C.; Marcks von Würtemberg, R.; Höglund, L. Modeling tools for design of type-II superlattice photodetectors. Infrared Phys. Technol. 2017, 84, 21–27. [Google Scholar] [CrossRef]
- Rogalski, A.; Kopytko, M.; Martyniuk, P. Antimonide-Based Infrared Detectors: A New Perspective; SPIE Press: Boston, MA, USA, 2018; pp. 166–179. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, W.; Wu, L.; Xie, X.; Lu, P.; Wang, S. Dark Current Characteristic of p-i-n and nBn MWIR InAs/GaSb Superlattice Infrared Detectors. In Proceedings of the 2019 IEEE 4th Optoelectronics Global Conference (OGC), Shenzhen, China, 3–6 September 2019; pp. 70–75. [Google Scholar] [CrossRef]
Name | Material | MLs 1 | Thickness 2 | ND/NA 3 | etc |
---|---|---|---|---|---|
ECL | InAs/AlSb | 16/4 | 200 | ND/3 × 1018 | C3 |
HB | InAs/AlSb | 16/4 | 200 | NA/5 × 1015 | |
RCA | InAs/GaSb | 14/7 | 3000 | NA/1 × 1016 | |
HCL | InAs/GaSb | 14/7 | 200 | NA/1 × 1018 | C2 |
EB | InAs/GaSb | 4/9 | 200 | ND/5 × 1015 | |
BCA | InAs/GaSb | 10/10 | 5000 | ND/1 × 1016 | |
BCL | InAs/GaSb | 10/10 | 200 | ND/3 × 1018 | C1 |
Sub. | GaSb:Te |
Name | Material | MLs | |||||
---|---|---|---|---|---|---|---|
ECL | InAs/AlSb | 16/4 | 0.514 | 14.52 | 4.785 | 0.054 | 0.506 |
HB | InAs/AlSb | 16/4 | 0.514 | 14.52 | 4.785 | 0.054 | 0.506 |
RCA | InAs/GaSb | 14/7 | 0.154 | 15.33 | 4.775 | 0.027 | 0.202 |
HCL | InAs/GaSb | 14/7 | 0.154 | 15.33 | 4.775 | 0.027 | 0.202 |
EB | InAs/GaSb | 4/9 | 0.488 | 15.53 | 4.393 | 0.036 | 0.182 |
BCA | InAs/GaSb | 10/10 | 0.222 | 15.42 | 4.654 | 0.035 | 0.206 |
BCL | InAs/GaSb | 10/10 | 0.222 | 15.42 | 4.654 | 0.035 | 0.206 |
Sub. | GaSb:Te |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-m.; Grein, C.H. Independently Accessible Dual-Band Barrier Infrared Detector Using Type-II Superlattices. Photonics 2024, 11, 531. https://doi.org/10.3390/photonics11060531
Park S-m, Grein CH. Independently Accessible Dual-Band Barrier Infrared Detector Using Type-II Superlattices. Photonics. 2024; 11(6):531. https://doi.org/10.3390/photonics11060531
Chicago/Turabian StylePark, Seung-man, and Christoph H. Grein. 2024. "Independently Accessible Dual-Band Barrier Infrared Detector Using Type-II Superlattices" Photonics 11, no. 6: 531. https://doi.org/10.3390/photonics11060531
APA StylePark, S. -m., & Grein, C. H. (2024). Independently Accessible Dual-Band Barrier Infrared Detector Using Type-II Superlattices. Photonics, 11(6), 531. https://doi.org/10.3390/photonics11060531