High-Power GHz Burst-Mode All-Fiber Laser System with Sub 300 fs Pulse Duration
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, S.; Teng, H.; Zhu, X.; Gao, Y.; Wang, K.; Wang, X.; Wang, Y.; Yu, S.; Zhao, K.; Wei, Z. Characterizing 86-attosecond isolated pulses based on amplitude gating of high harmonic generation [Invited]. Chin. Opt. Lett. 2023, 21, 113201. [Google Scholar] [CrossRef]
- Köttig, F.; Tani, F.; Uebel, P.; Russell, P.S.J.; Travers, J.C. High Average-Power and Energy Deep-Ultraviolet Femtosecond Pulse Source Driven by 10 MHz Fibre-Laser. In Proceedings of the 2015 European Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, Munich, Germany, 21 June 2015; p. PD_A_7. [Google Scholar]
- Meyer, F.; Hekmat, N.; Vogel, T.; Omar, A.; Mansourzadeh, S.; Fobbe, F.; Hoffmann, M.; Wang, Y.; Saraceno, C.J. Milliwatt-class broadband THz source driven by a 112 W, sub-100 fs thin-disk laser. Opt. Express 2019, 27, 30340–30349. [Google Scholar] [CrossRef]
- Tan, Y.X.; Chu, W.; Wang, P.; Li, W.B.; Wang, Z.; Cheng, Y. Water-assisted laser drilling of high-aspect-ratio 3D microchannels in glass with spatiotemporally focused femtosecond laser pulses. Opt. Mater. Express 2019, 9, 1971–1978. [Google Scholar] [CrossRef]
- Xia, K.B.; Ren, N.F.; Lin, Q.; Li, T.; Gao, F.Q.; Yang, H.Y.; Song, S.W. Experimental investigation of femtosecond laser through-hole drilling of stainless steel with and without transverse magnetic assistance. Appl. Opt. 2021, 60, 1399–1410. [Google Scholar] [CrossRef]
- Wang, J.; Sun, S.; Zhang, H.; Hasegawa, S.; Wang, P.; Hayasaki, Y. Holographic Femtosecond Laser Parallel Processing Method Based on the Fractional Fourier Transform. Opt. Lasers Eng. 2021, 146, 106704. [Google Scholar] [CrossRef]
- Raciukaitis, G. Ultra-Short Pulse Lasers for Microfabrication: A Review. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1100112. [Google Scholar] [CrossRef]
- Kerse, C.; Kalaycioglu, H.; Elahi, P.; Cetin, B.; Kesim, D.K.; Akcaalan, O.; Yavas, S.; Asik, M.; Oktem, B.; Hoogland, H. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 2016, 537, 84. [Google Scholar] [CrossRef]
- Park, M.; Gu, Y.R.; Mao, X.L.; Grigoropoulos, C.P.; Zorba, V. Mechanisms of ultrafast GHz burst fs laser ablation. Sci. Adv. 2023, 9, eadf6397. [Google Scholar] [CrossRef]
- Bonamis, G.; Mishchick, K.; Audouard, E.; Honninger, C.; Mottay, E.; Lopez, J.; Manek-Honninger, I. High efficiency femtosecond laser ablation with gigahertz level bursts. J. Laser Appl. 2019, 31, 022205. [Google Scholar] [CrossRef]
- Mishchik, K.; Bonamis, G.; Qiao, J.; Lopez, J.; Audouard, E.; Mottay, E.; Hönninger, C.; Manek-Hönninger, I. High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source. Opt. Lett. 2019, 44, 2193–2196. [Google Scholar] [CrossRef]
- Bonamis, G.; Audouard, E.; Honninger, C.; Lopez, J.; Mishchik, K.; Mottay, E.; Manek-Honninger, I. Systematic study of laser ablation with GHz bursts of femtosecond pulses. Opt. Express 2020, 28, 27702–27714. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, X.; Yang, L.; Tong, M.; Norwood, R.A.; Wei, H.; Chu, Y.; Li, H.; Dai, N.; Peng, J.; et al. Numerical investigation of GHz repetition rate fundamentally mode-locked all-fiber lasers. Opt. Express 2019, 27, 14487–14504. [Google Scholar] [CrossRef]
- Hu, M.; Shen, J.; Cao, Y.; Yuan, S.; Zeng, H. Generation of 48 fs, 1 GHz Fundamentally Mode-Locked Pulses Directly from an Yb-doped “Solid-State Fiber Laser”. Photonics 2023, 10, 192. [Google Scholar] [CrossRef]
- Yang, H.-W.; Kim, C.; Choi, S.Y.; Kim, G.-H.; Kobayashi, Y.; Rotermund, F.; Kim, J. 1.2-GHz repetition rate, diode-pumped femtosecond Yb:KYW laser mode-locked by a carbon nanotube saturable absorber mirror. Opt. Express 2012, 20, 29518–29523. [Google Scholar] [CrossRef]
- Zheng, L.; Tian, W.; Liu, H.; Wang, G.; Bai, C.; Xu, R.; Zhang, D.; Han, H.; Zhu, J.; Wei, Z. 2-GHz watt-level Kerr-lens mode-locked Yb:KGW laser. Opt. Express 2021, 29, 12950–12957. [Google Scholar] [CrossRef]
- Chen, H.-W.; Chang, G.; Xu, S.; Yang, Z.; Kaertner, F.X. 3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser. Opt. Lett. 2012, 37, 3522–3524. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Gao, X.; Niu, F.; Jiang, T.; Wang, A.; Zhang, Z. 1 GHz repetition rate femtosecond Yb:fiber laser for direct generation of carrier-envelope offset frequency. Appl. Opt. 2015, 54, 8350–8353. [Google Scholar] [CrossRef]
- Elahi, P.; Akçaalan, Ö.; Ertek, C.; Eken, K.; Ilday, F.Ö.; Kalaycoğlu, H. High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal. Opt. Lett. 2018, 43, 535–538. [Google Scholar] [CrossRef]
- Fan, Y.; Xiu, H.; Lin, W.; Chen, X.; Hu, X.; Wang, W.; Wen, J.; Tian, H.; Hao, M.; Wei, C.; et al. Nonlinear chirped pulse amplification for a 100-W-class GHz femtosecond all-fiber laser system at 1.5 μm. High Power Laser Sci. Eng. 2023, 11, e50. [Google Scholar] [CrossRef]
- Bartulevicius, T.; Lipnickas, M.; Petrauskiene, V.; Madeikis, K.; Michailovas, A. 30 W-average-power femtosecond NIR laser operating in a flexible GHz-burst-regime. Opt. Express 2022, 30, 36849–36862. [Google Scholar] [CrossRef]
- Cao, X.; Li, F.; Song, D.; Wang, Y.; Li, Q.; Zhao, H.; Zhao, W.; Wen, W.; Si, J. Environmentally stable all-fiber femtosecond laser for industrial application based on a SESAM mode-locked ytterbium-doped laser. Microw. Opt. Technol. Lett. 2024, 66, e34119. [Google Scholar] [CrossRef]
Dispersion Control | Type of Dispersion | Values |
---|---|---|
Zero dispersion control of active fiber loop | Second-order dispersion of single-mode fiber in the fiber loop | 0.1424 ps2 |
Third-order dispersion of single-mode fiber in the fiber loop | 2.645 × 10−4 ps3 | |
CFBG used in the fiber loop | −0.143 ps2 | |
Stretcher | Second-order dispersion of the CFBG stretcher | 28.148 ps2 |
Third-order dispersion of the CFBG stretcher | −0.241 ps3 | |
Second-order dispersion tuning range of the CFBG stretcher | ≥0.823 ps2 | |
Third-order dispersion tuning range of the CFBG stretcher | ≥0.0576 ps3 | |
Fiber dispersion in the CPA system | Second-order dispersion of the fibers | ~0.149 ps2 |
Third-order dispersion of the fibers | 2.76 × 10−4 ps3 | |
Compressor | Linear distance of the grating pair | 95 cm |
Second-order dispersion of the grating pair | −28.1 ps2 | |
Third-order dispersion of the grating pair | 0.241 ps3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Zhao, W.; Fu, Y.; Xing, J.; Wen, W.; Wang, L.; Li, Q.; Cao, X.; Zhao, H.; Wang, Y. High-Power GHz Burst-Mode All-Fiber Laser System with Sub 300 fs Pulse Duration. Photonics 2024, 11, 570. https://doi.org/10.3390/photonics11060570
Li F, Zhao W, Fu Y, Xing J, Wen W, Wang L, Li Q, Cao X, Zhao H, Wang Y. High-Power GHz Burst-Mode All-Fiber Laser System with Sub 300 fs Pulse Duration. Photonics. 2024; 11(6):570. https://doi.org/10.3390/photonics11060570
Chicago/Turabian StyleLi, Feng, Wei Zhao, Yuxi Fu, Jixin Xing, Wenlong Wen, Lei Wang, Qianglong Li, Xue Cao, Hualong Zhao, and Yishan Wang. 2024. "High-Power GHz Burst-Mode All-Fiber Laser System with Sub 300 fs Pulse Duration" Photonics 11, no. 6: 570. https://doi.org/10.3390/photonics11060570
APA StyleLi, F., Zhao, W., Fu, Y., Xing, J., Wen, W., Wang, L., Li, Q., Cao, X., Zhao, H., & Wang, Y. (2024). High-Power GHz Burst-Mode All-Fiber Laser System with Sub 300 fs Pulse Duration. Photonics, 11(6), 570. https://doi.org/10.3390/photonics11060570