Full Stokes Mid-Wavelength Infrared Polarization Photodetector Based on the Chiral Dielectric Metasurface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure and Optimization
2.2. Optical Mode and Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, W.; Lv, Y.; Geng, R.; Li, Y.; Niu, C. Photoelectric detector surface damage state polarization imaging type detection system. Infrared Laser Eng. 2022, 51, 20210629. [Google Scholar]
- Li, L.L.; Huang, H.X.; Guo, Y.; Yao, N.F.; Zhao, Y.Q. 3D reconstruction method of target based on infrared radiation polarization imaging. J. Infrared Millim. Waves 2021, 40, 413–419. [Google Scholar] [CrossRef]
- Liu, Z.; Xiao, S.; Qin, T. Application of polarization imaging in measurement of optical curvature radius. J. Appl. Opt. 2021, 42, 95–103. [Google Scholar]
- Xiong, Z.; Liao, R.; Zeng, Y.; Liu, J.; Ma, H. Rapid identification of metal debris in complicated scenes by using polarization imaging(Invited). Infrared Laser Eng. 2020, 49, 20201012. [Google Scholar] [CrossRef]
- Wang, F.; Sun, F.; Zhu, D.; Liu, T.; Wang, X.; Wang, F. Metal Fatigue Damage Assessment Based on Polarized Thermography. Acta Opt. Sin. 2020, 40, 1412002. [Google Scholar] [CrossRef]
- Shen, Y.; Yao, Y.; He, H.; Liu, S.; Ma, H. Mueller Matrix Polarimetry: A Label-Free, Quantitative Optical Method for Clinical Diagnosis. Chin. J. Lasers 2020, 47, 0207001. [Google Scholar] [CrossRef]
- Cheng, B.; Zou, Y.; Song, G. Full-stokes polarization photodetector based on the chiral metasurface with the dislocated double gold rod configurations. Opt. Laser Technol. 2024, 174, 110531. [Google Scholar] [CrossRef]
- Ju, H.J.; Ren, L.Y.; Liang, J.; Qu, E.S.; Bai, Z.F. Method for Mueller matrix acquisition based on a division-of-aperture simultaneous polarimetric imaging technique. J. Quant. Spectrosc. Radiat. Transf. 2019, 225, 39–44. [Google Scholar] [CrossRef]
- Yu, M.; Cao, L.; Li, L.; Dong, L.T.; Wang, L.; Chen, X.; Song, Z.X.; Weng, Z.K.; Wang, Z.B.; IEEE. Fabrication of Division-of-focal-plane Polarizer Arrays by Electron Beam Lithography. In Proceedings of the 2017 7th International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Shanghai, China, 7–11 August 2017; pp. 79–82. [Google Scholar]
- Yan, C.; Li, X.; Pu, M.B.; Ma, X.L.; Zhang, F.; Gao, P.; Liu, K.P.; Luo, X.G. Midinfrared real-time polarization imaging with all-dielectric metasurfaces. Appl. Phys. Lett. 2019, 114, 161904. [Google Scholar] [CrossRef]
- Cheng, B.; Zou, Y.; Shao, H.; Li, T.; Song, G. Full-Stokes imaging polarimetry based on a metallic metasurface. Opt. Express 2020, 28, 27324–27336. [Google Scholar] [CrossRef]
- Paniagua-Domínguez, R.; Yu, Y.F.; Khaidarov, E.; Choi, S.M.; Leong, V.; Bakker, R.M.; Liang, X.N.; Fu, Y.H.; Valuckas, V.; Krivitsky, L.A.; et al. A Metalens with a Near-Unity Numerical Aperture. Nano Lett. 2018, 18, 2124–2132. [Google Scholar] [CrossRef]
- Arbabi, A.; Horie, Y.; Ball, A.J.; Bagheri, M.; Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 2015, 6, 7069. [Google Scholar] [CrossRef]
- Seo, D.J.; Kyoung, J. Shape dependence of all-dielectric terahertz metasurface. Opt. Express 2022, 30, 38564–38575. [Google Scholar] [CrossRef] [PubMed]
- Schonbrun, E.; Seo, K.; Crozier, K.B. Reconfigurable Imaging Systems Using Elliptical Nanowires. Nano Lett. 2011, 11, 4299–4303. [Google Scholar] [CrossRef]
- Mutlu, M.; Akosman, A.E.; Kurt, G.; Gokkavas, M.; Ozbay, E. Experimental realization of a high-contrast grating based broadband quarter-wave plate. Opt. Express 2012, 20, 27966–27973. [Google Scholar] [CrossRef]
- Cheng, B.; Song, G. Full-Stokes polarization photodetector based on the hexagonal lattice chiral metasurface. Opt. Express 2023, 31, 30993–31004. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.C.; Tsai, W.Y.; Chen, W.T.; Huang, Y.W.; Chen, T.Y.; Chen, J.W.; Liao, C.Y.; Chu, C.H.; Sun, G.; Tsai, D.P. Versatile Polarization Generation with an Aluminum Plasmonic Metasurface. Nano Lett. 2017, 17, 445–452. [Google Scholar] [CrossRef]
- Zhou, J.; Qian, H.; Hu, G.; Luo, H.; Wen, S.; Liu, Z. Broadband Photonic Spin Hall Meta-Lens. ACS Nano 2018, 12, 82–88. [Google Scholar] [CrossRef]
- Chen, W.B.; Rui, G.H.; Abeysinghe, D.C.; Nelson, R.L.; Zhan, Q.W. Hybrid spiral plasmonic lens: Towards an efficient miniature circular polarization analyzer. Opt. Express 2012, 20, 26299–26307. [Google Scholar] [CrossRef] [PubMed]
- Bachman, K.A.; Peltzer, J.J.; Flammer, P.D.; Furtak, T.E.; Collins, R.T.; Hollingsworth, R.E. Spiral plasmonic nanoantennas as circular polarization transmission filters. Opt. Express 2012, 20, 1308–1319. [Google Scholar] [CrossRef]
- Schwanecke, A.S.; Fedotov, V.A.; Khardikov, V.V.; Prosvirnin, S.L.; Chen, Y.; Zheludev, N.I. Nanostructured metal film with asymmetric optical transmission. Nano Lett. 2008, 8, 2940–2943. [Google Scholar] [CrossRef] [PubMed]
- Fedotov, V.A.; Schwanecke, A.S.; Zheludev, N.I.; Khardikov, V.V.; Prosvirnin, S.L. Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures. Nano Lett. 2007, 7, 1996–1999. [Google Scholar] [CrossRef]
- Ouyang, L.X.; Wang, W.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X.D. Near-infrared chiral plasmonic metasurface absorbers. Opt. Express 2018, 26, 31484–31489. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.P.; Zhao, X.N.; Lin, Y.; Zhu, A.J.; Zhu, X.J.; Guo, P.J.; Cao, B.; Wang, C.H. All-dielectric metasurface circular dichroism waveplate. Sci. Rep. 2017, 7, 41893. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Gao, S.L.; Song, W.G.; Li, H.M.; Zhu, S.N.; Li, T. Metasurfaces with Planar Chiral Meta-Atoms for Spin Light Manipulation. Nano Lett. 2021, 21, 1815–1821. [Google Scholar] [CrossRef]
- Gansel, J.K.; Thiel, M.; Rill, M.S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science 2009, 325, 1513–1515. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Wang, L.; Zou, Y.; Lv, L.; Li, C.; Xu, Y.; Song, G. Large bandwidth and high-efficiency plasmonic quarter-wave plate. Opt. Express 2021, 29, 16939–16949. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Wang, C.; Chen, X.H.; Basiri, A.; Wang, C.; Yao, Y. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection. Photonics Res. 2019, 7, 1051–1060. [Google Scholar] [CrossRef]
- Basiri, A.; Chen, X.H.; Bai, J.; Amrollahi, P.; Carpenter, J.; Holman, Z.; Wang, C.; Yao, Y. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light-Sci. Appl. 2019, 8, 78. [Google Scholar] [CrossRef]
- Zhou, J.X.; Wu, Q.Y.; Zhao, J.X.; Posner, C.; Lei, M.; Chen, G.H.; Zhang, J.; Liu, Z.W. Fourier Optical Spin Splitting Microscopy. Phys. Rev. Lett. 2022, 129, 020801. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Zhao, F.; Zhang, Y.X.; Wen, S.; Chai, H.C.; Gao, Y.H.; Wang, W.H.; Cao, L.C.; Yang, Y.M. Single-shot deterministic complex amplitude imaging with a single-layer metalens. Sci. Adv. 2024, 10, eadl0501. [Google Scholar] [CrossRef]
- Afshinmanesh, F.; White, J.S.; Cai, W.S.; Brongersma, M.L. Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics 2012, 1, 125–129. [Google Scholar] [CrossRef]
- Li, W.; Coppens, Z.J.; Besteiro, L.V.; Wang, W.; Govorov, A.O.; Valentine, J. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 2015, 6, 8379. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Bai, J.; Choi, S.; Basiri, A.; Chen, X.; Wang, C.; Yao, Y. Chip-integrated metasurface full-Stokes polarimetric imaging sensor. Light-Sci. Appl. 2023, 12, 218. [Google Scholar] [CrossRef]
- Beletic, J.W.; Blank, R.; Gulbransen, D.; Lee, D.; Loose, M.; Piquette, E.C.; Sprafke, T.; Tennant, W.E.; Zandian, M.; Zino, J. Teledyne Imaging Sensors: Infrared imaging technologies for Astronomy & Civil Space. In Proceedings of the Conference on High Energy, Optical, and Infrared Detectors for Astronomy III, Marseille, France, 23–26 June 2008. [Google Scholar]
- Sen, S.; Rhiger, D.R.; Curtis, C.R.; Kalisher, M.H.; Hettich, H.L.; Currie, M.C. Infrared absorption behavior in CdZnTe substrates. J. Electron. Mater. 2001, 30, 611–618. [Google Scholar] [CrossRef]
- Shkondin, E.; Takayama, O.; Panah, M.E.A.; Liu, P.; Larsen, P.V.; Mar, M.D.; Jensen, F.; Lavrinenko, A.V. Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials. Opt. Mater. Express 2017, 7, 1606–1627. [Google Scholar] [CrossRef]
- Li, H.H. Refractive-index of alkaline-earth halides and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 1980, 9, 161–289. [Google Scholar] [CrossRef]
- Goldstein, D. Polarized Light, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–770. [Google Scholar]
Incidence | ||
---|---|---|
LCP | −1 | −0.9809 |
RCP | 1 | 0.9802 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, B.; Zou, Y.; Song, G. Full Stokes Mid-Wavelength Infrared Polarization Photodetector Based on the Chiral Dielectric Metasurface. Photonics 2024, 11, 571. https://doi.org/10.3390/photonics11060571
Cheng B, Zou Y, Song G. Full Stokes Mid-Wavelength Infrared Polarization Photodetector Based on the Chiral Dielectric Metasurface. Photonics. 2024; 11(6):571. https://doi.org/10.3390/photonics11060571
Chicago/Turabian StyleCheng, Bo, Yuxiao Zou, and Guofeng Song. 2024. "Full Stokes Mid-Wavelength Infrared Polarization Photodetector Based on the Chiral Dielectric Metasurface" Photonics 11, no. 6: 571. https://doi.org/10.3390/photonics11060571
APA StyleCheng, B., Zou, Y., & Song, G. (2024). Full Stokes Mid-Wavelength Infrared Polarization Photodetector Based on the Chiral Dielectric Metasurface. Photonics, 11(6), 571. https://doi.org/10.3390/photonics11060571