Advancements in CMOS-Compatible Silicon Nitride Optical Modulators via Thin-Film Crystalline or Amorphous Silicon p–n Junctions
Abstract
:1. Introduction
2. Device Description
2.1. Silicon Nitride Platform
2.2. Carrier Plasma Dispersion in Crystalline and Amorphous Silicon
2.3. p–n Junction Theory and Design
2.4. Lateral and Vertical p–n Junction Structures
3. Results and Discussion
3.1. Electrical Results
3.1.1. Lateral p–n Junction Results
3.1.2. Vertical p–n Junction Results
3.2. Optical Results
3.2.1. Lateral p–n Junction Modulator
3.2.2. Vertical p–n Junction Modulator
3.2.3. Comparative Analysis: Lateral and Vertical p–n Junctions on SiN vs. Thermal Tuners
Electro-Optical Device | (m) | Voltage (V) | (mW) | IL (dB) (c-Si) | IL (dB) (a-Si) | Speed | ||||
---|---|---|---|---|---|---|---|---|---|---|
TE | TM | TE | TM | TE | TM | TE | TM | |||
Lateral p–n | 215 | 1550 | = 1 | 16.95 | 122.2 | 3.0 | 3.2 | 9.63 | 10.21 | ∼MHz |
168 | 1107 | = 1 | 13.24 | 87.27 | 3.2 | 3.2 | 9.97 | 9.67 | ∼MHz | |
287 | 1937 | = 1 | 22.62 | 152.8 | 2.2 | 2.2 | 8.61 | 8.60 | ∼MHz | |
5033 | 38,750 | = 0.9 | 21.35 | 164.40 | 3.16 | 3.95 | 13.77 | 16.85 | ∼MHz | |
2500 | 18,023 | = 1 | 39.78 | 286.82 | 2.46 | 2.78 | 10.52 | 11.69 | ∼MHz | |
(m) | (mW) | IL (dB) | Speed | |||||||
Thermal tuners Ref. [79] | 1000 | 5–175 | <1 | ∼kHz |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blumenthal, D.J.; Heideman, R.; Geuzebroek, D.; Leinse, A.; Roeloffzen, C. Silicon Nitride in Silicon Photonics. Proc. IEEE 2018, 106, 2209–2231. [Google Scholar] [CrossRef]
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fédéli, J.M.; et al. Roadmap on silicon photonics. J. Opt. 2016, 18, 073003. [Google Scholar] [CrossRef]
- Shekhar, S.; Bogaerts, W.; Chrostowski, L.; Bowers, J.E.; Hochberg, M.; Soref, R.; Shastri, B.J. Roadmapping the next generation of silicon photonics. Nat. Commun. 2024, 15, 751. [Google Scholar] [CrossRef] [PubMed]
- Sharma, T.; Wang, J.; Kaushik, B.K.; Cheng, Z.; Kumar, R.; Wei, Z.; Li, X. Review of Recent Progress on Silicon Nitride-Based Photonic Integrated Circuits. IEEE Access 2020, 8, 195436–195446. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Wan, Y.; Yu, Y.; Zhang, Y.; Hu, X.; Xiao, X.; Xu, H.; Zhang, L.; Pan, B. Silicon photonics for high-capacity data communications. Photon. Res. 2022, 10, A106–A134. [Google Scholar] [CrossRef]
- Xiang, C.; Jin, W.; Bowers, J.E. Silicon nitride passive and active photonic integrated circuits: Trends and prospects. Photon. Res. 2022, 10, A82–A96. [Google Scholar] [CrossRef]
- Margalit, N.; Xiang, C.; Bowers, S.M.; Bjorlin, A.; Blum, R.; Bowers, J.E. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 2021, 118, 220501. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, J.; Zhu, L.; Zhang, Q. Silicon Photonics for 100Gbaud. J. Lightwave Technol. 2021, 39, 857–867. [Google Scholar] [CrossRef]
- Fang, Z.; Zhao, C.Z. Recent Progress in Silicon Photonics: A Review. ISRN Opt. 2012, 2012, 428690. [Google Scholar] [CrossRef]
- Yuan, Y.; Peng, Y.; Sorin, W.V.; Cheung, S.; Huang, Z.; Liang, D.; Fiorentino, M.; Beausoleil, R.G. A 5 × 200 Gbps microring modulator silicon chip empowered by two-segment Z-shape junctions. Nat. Commun. 2024, 15, 918. [Google Scholar] [CrossRef]
- Jalali, B.; Fathpour, S. Silicon Photonics. J. Light. Technol. 2006, 24, 4600–4615. [Google Scholar] [CrossRef]
- Soref, R. The Past, Present, and Future of Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [Google Scholar] [CrossRef]
- Siwak, N.P.; Fan, X.Z.; Ghodssi, R. Fabrication challenges for indium phosphide microsystems. J. Micromech. Microeng. 2015, 25, 043001. [Google Scholar] [CrossRef]
- Zhao, H.; Pinna, S.; Sang, F.; Song, B.; Brunelli, S.T.S.; Coldren, L.A.; Klamkin, J. High-Power Indium Phosphide Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 4500410. [Google Scholar] [CrossRef]
- Muñoz, P.; Micó, G.; Bru, L.A.; Pastor, D.; Pérez, D.; Doménech, J.D.; Fernández, J.; Baños, R.; Gargallo, B.; Alemany, R.; et al. Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications. Sensors 2017, 17, 2088. [Google Scholar] [CrossRef]
- Blasco-Solvas, M.; Fernandez-Vior, B.; Sabek, J.; Fernandez-Gavela, A.; Dominguez-Bucio, T.; Gardes, F.Y.; Dominguez-Horna, C.; Faneca, J. Silicon Nitride Building Blocks in the Visible Range of the Spectrum. J. Light. Technol. 2024. [Google Scholar] [CrossRef]
- Ji, X.; Roberts, S.; Corato-Zanarella, M.; Lipson, M. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photonics 2021, 6, 071101. [Google Scholar] [CrossRef]
- Buzaverov, K.A.; Baburin, A.S.; Sergeev, E.V.; Avdeev, S.S.; Lotkov, E.S.; Andronik, M.; Stukalova, V.E.; Baklykov, D.A.; Dyakonov, I.V.; Skryabin, N.N.; et al. Low-loss silicon nitride photonic ICs for near-infrared wavelength bandwidth. Opt. Express 2023, 31, 16227. [Google Scholar] [CrossRef]
- Bucio, T.D.; Lacava, C.; Clementi, M.; Faneca, J.; Skandalos, I.; Baldycheva, A.; Galli, M.; Debnath, K.; Petropoulos, P.; Gardes, F. Silicon Nitride Photonics for the Near-Infrared. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 8200613. [Google Scholar] [CrossRef]
- Blasco, M.; Dacunha, S.; Dominguez, C.; Faneca, J. Silicon nitride stoichiometry tuning for visible photonic integrated components. Appl. Phys. Lett. 2024, 124, 221104. [Google Scholar] [CrossRef]
- Gardes, F.; Shooa, A.; De Paoli, G.; Skandalos, I.; Ilie, S.; Rutirawut, T.; Talataisong, W.; Faneca, J.; Vitali, V.; Hou, Y.; et al. A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits. Sensors 2022, 22, 4227. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, A.; Goddard, L.L. Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances. Opt. Lett. 2013, 38, 3878. [Google Scholar] [CrossRef]
- Pernice, W.H.P.; Li, M.; Gallagher, D.F.G.; Tang, H.X. Silicon nitride membrane photonics. J. Opt. Pure Appl. Opt. 2009, 11, 114017. [Google Scholar] [CrossRef]
- Verlaan, V.; Verkerk, A.; Arnoldbik, W.; van der Werf, C.; Bakker, R.; Houweling, Z.; Romijn, I.; Borsa, D.; Weeber, A.; Luxembourg, S.; et al. The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD. Thin Solid Film. 2009, 517, 3499–3502. [Google Scholar] [CrossRef]
- Moss, D.J.; Morandotti, R.; Gaeta, A.L.; Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 2013, 7, 597–607. [Google Scholar] [CrossRef]
- Baets, R.; Subramanian, A.Z.; Clemmen, S.; Kuyken, B.; Bienstman, P.; Thomas, N.L.; Roelkens, G.; Thourhout, D.V.; Helin, P.; Severi, S. Silicon Photonics: Silicon nitride versus silicon-on-insulator. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 20–24 March 2016; Optica Publishing Group: Washington, DC, USA, 2016; p. Th3J.1. [Google Scholar] [CrossRef]
- Reed, G.T.; Thomson, D.J.; Gardes, F.Y.; Hu, Y.; Fedeli, J.M.; Mashanovich, G.Z. High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions. Front. Phys. 2014, 2, 77. [Google Scholar] [CrossRef]
- Xu, Q.; Schmidt, B.; Pradhan, S.; Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 2005, 435, 325–327. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D.J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526. [Google Scholar] [CrossRef]
- Witzens, J. High-Speed Silicon Photonics Modulators. Proc. IEEE 2018, 106, 2158–2182. [Google Scholar] [CrossRef]
- Alexander, K.; George, J.P.; Verbist, J.; Neyts, K.; Kuyken, B.; Thourhout, D.V.; Beeckman, J. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 2018, 9, 3444. [Google Scholar] [CrossRef]
- Azadeh, S.S.; Merget, F.; Nezhad, M.P.; Witzens, J. On the measurement of the Pockels effect in strained silicon. Opt. Lett. 2015, 40, 1877. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Cheng, R.; Shang, Z.; Sun, J.; Huang, Q.; Li, Z.; Zhang, X.; Li, Z.; Guo, K.; Yan, P. SiN-5CB liquid crystal hybrid integrated Broadband Phase shifter. Infrared Phys. Technol. 2024, 137, 105164. [Google Scholar] [CrossRef]
- Rutirawut, T.; Talataisong, W.; Gardes, F.Y. Designs of Silicon Nitride Slot Waveguide Modulators With Electro-Optic Polymer and the Effect of Induced Charges in Si-Substrate on Their Performance. IEEE Photonics J. 2021, 13, 6600715. [Google Scholar] [CrossRef]
- de Beeck, C.O.; Haq, B.; Elsinger, L.; Gocalinska, A.; Pelucchi, E.; Corbett, B.; Roelkens, G.; Kuyken, B. Heterogeneous III–V on silicon nitride amplifiers and lasers via microtransfer printing. Optica 2020, 7, 386. [Google Scholar] [CrossRef]
- Tran, M.A.; Zhang, C.; Morin, T.J.; Chang, L.; Barik, S.; Yuan, Z.; Lee, W.; Kim, G.; Malik, A.; Zhang, Z.; et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 2022, 610, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Feng, J.; Han, S.; Xu, Z.; Mao, W.; Zhang, T.; Kim, J.S.; Roh, I.; Zhao, Y.; Kim, D.H.; et al. Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nat. Rev. Mater. 2023, 8, 498–517. [Google Scholar] [CrossRef]
- Datta, I.; Chae, S.H.; Bhatt, G.R.; Tadayon, M.A.; Li, B.; Yu, Y.; Park, C.; Park, J.; Cao, L.; Basov, D.N.; et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photonics 2020, 14, 256–262. [Google Scholar] [CrossRef]
- Meng, Y.; Ye, S.; Shen, Y.; Xiao, Q.; Fu, X.; Lu, R.; Liu, Y.; Gong, M. Waveguide Engineering of Graphene Optoelectronics-Modulators and Polarizers. IEEE Photonics J. 2018, 10, 6600217. [Google Scholar] [CrossRef]
- Phare, C.T.; Lee, Y.H.D.; Cardenas, J.; Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 2015, 9, 511–514. [Google Scholar] [CrossRef]
- Lee, B.S.; Kim, B.; Freitas, A.P.; Mohanty, A.; Zhu, Y.; Bhatt, G.R.; Hone, J.; Lipson, M. High-performance integrated graphene electro-optic modulator at cryogenic temperature. Nanophotonics 2020, 10, 99–104. [Google Scholar] [CrossRef]
- Faneca, J.; Hogan, B.T.; Diez, I.R.; Gardes, F.Y.; Baldycheva, A. Tuning silicon-rich nitride microring resonances with graphene capacitors for high-performance computing applications. Opt. Express 2019, 27, 35129. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Clark, G.; Leenheer, A.J.; Zimmermann, M.; Dominguez, D.; Menssen, A.J.; Heim, D.; Gilbert, G.; Englund, D.; Eichenfield, M. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photonics 2022, 16, 59–65. [Google Scholar] [CrossRef]
- Wang, J.; Liu, K.; Harrington, M.W.; Rudy, R.Q.; Blumenthal, D.J. Silicon nitride stress-optic microresonator modulator for optical control applications. Opt. Express 2022, 30, 31816. [Google Scholar] [CrossRef] [PubMed]
- Faneca, J.; Carrillo, S.G.C.; Gemo, E.; de Galarreta, C.R.; Bucio, T.D.; Gardes, F.Y.; Bhaskaran, H.; Pernice, W.H.P.; Wright, C.D.; Baldycheva, A. Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands. Opt. Mater. Express 2020, 10, 1778. [Google Scholar] [CrossRef]
- Faneca, J.; Zeimpekis, I.; Ilie, S.T.; Bucio, T.D.; Grabska, K.; Hewak, D.W.; Gardes, F.Y. Towards low loss non-volatile phase change materials in mid index waveguides. Neuromorphic Comput. Eng. 2021, 1, 014004. [Google Scholar] [CrossRef]
- Faneca, J.; Bucio, T.D.; Gardes, F.Y.; Baldycheva, A. O-band N-rich silicon nitride MZI based on GST. Appl. Phys. Lett. 2020, 116, 093502. [Google Scholar] [CrossRef]
- Faneca, J.; Meyer, S.; Gardes, F.; Chigrin, D.N. Graphene microheater for phase change chalcogenides based integrated photonic components. Opt. Mater. Express 2022, 12, 1991–2002. [Google Scholar] [CrossRef]
- IMB-CNM (CSIC). Plataforma SiN Photonic. 2024. Available online: https://www.imb-cnm.csic.es/es/sala-blanca-de-micro-y-nanofabricacion/plataforma-sin-photonic (accessed on 18 June 2024).
- Wilmart, Q.; Dirani, H.E.; Tyler, N.; Fowler, D.; Malhouitre, S.; Garcia, S.; Casale, M.; Kerdiles, S.; Hassan, K.; Monat, C.; et al. A Versatile Silicon-Silicon Nitride Photonics Platform for Enhanced Functionalities and Applications. Appl. Sci. 2019, 9, 255. [Google Scholar] [CrossRef]
- Synopsys Inc. SentaurusTM Device User Guide; Synopsys Inc.: Sunnyvale, CA, USA, 2015; Available online: https://www.synopsys.com/ (accessed on 1 July 2024).
- Soref, R.; Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 1987, 23, 123–129. [Google Scholar] [CrossRef]
- Corte, F.G.D.; Rao, S. Use of Amorphous Silicon for Active Photonic Devices. IEEE Trans. Electron Devices 2013, 60, 1495–1505. [Google Scholar] [CrossRef]
- Rao, S.; D’Addio, C.; Corte, F.G.D. All-optical modulation in a CMOS-compatible amorphous silicon-based device. J. Eur. Opt. Soc. Rapid Publ. 2012, 7, 12023. [Google Scholar] [CrossRef]
- Fauchet, P.; Hulin, D.; Vanderhaghen, R.; Mourchid, A.; Nighan, W. The properties of free carriers in amorphous silicon. J. Non Cryst. Solids 1992, 141, 76–87. [Google Scholar] [CrossRef]
- Nedeljkovic, M.; Soref, R.; Mashanovich, G.Z. Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon over the 1–14 μm Infrared Wavelength Range. IEEE Photonics J. 2011, 3, 1171–1180. [Google Scholar] [CrossRef]
- Chrostowski, L.; Hochberg, M. Silicon Photonics Design: From Devices to Systems; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Chatterjee, P. Photovoltaic performance of a -Si:H homojunction p–i–n solar cells: A computer simulation study. J. Appl. Phys. 1994, 76, 1301–1313. [Google Scholar] [CrossRef]
- Meftah, A.F.; Meftah, A.M.; Belghachi, A. Computer simulation of the a-Si:H p–i–n solar cell performance sensitivity to the free carrier’s mobilities, the capture cross sections and the density of gap states. J. Phys. Condens. Matter 2006, 18, 9435–9446. [Google Scholar] [CrossRef]
- Gardes, F.Y.; Reed, G.T.; Emerson, N.G.; Png, C.E. A sub-micron depletion-type photonic modulator in Silicon On Insulator. Opt. Express 2005, 13, 8845. [Google Scholar] [CrossRef]
- Liu, A.; Liao, L.; Rubin, D.; Basak, J.; Chetrit, Y.; Nguyen, H.; Cohen, R.; Izhaky, N.; Paniccia, M. Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide. Semicond. Sci. Technol. 2008, 23, 064001. [Google Scholar] [CrossRef]
- Mulcahy, J.; Peters, F.H.; Dai, X. Modulators in Silicon Photonics—Heterogenous Integration & Beyond. Photonics 2022, 9, 40. [Google Scholar] [CrossRef]
- Sun, H.; Qiao, Q.; Guan, Q.; Zhou, G. Silicon Photonic Phase Shifters and Their Applications: A Review. Micromachines 2022, 13, 1509. [Google Scholar] [CrossRef]
- Hack, M.; Shur, M. Physics of amorphous silicon alloy p–i–n solar cells. J. Appl. Phys. 1985, 58, 997–1020. [Google Scholar] [CrossRef]
- Sark, W.G.V. Methods of Deposition of Hydrogenated Amorphous Silicon for Device Applications. In Advances in Plasma-Grown Hydrogenated Films; Thin Films and Nanostructures; Academic Press: San Diego, CA, USA, 2002; pp. 1–215. [Google Scholar] [CrossRef]
- Shariah, A.; Bataineh, M. Electrical and Structural Properties of Crystallized Amorphous Silicon Thin Films. Silicon 2023, 15, 2727–2735. [Google Scholar] [CrossRef]
- Sze, S.; Lee, M. Semiconductor Devices: Physics and Technology; Wiley: New York, NY, USA, 2012. [Google Scholar]
- Apanovich, Y.; Blakey, P.; Cottle, R.; Lyumkis, E.; Polsky, B.; Shur, A.; Tcherniaev, A. Numerical simulation of submicrometer devices including coupled nonlocal transport and nonisothermal effects. IEEE Trans. Electron Devices 1995, 42, 890–898. [Google Scholar] [CrossRef]
- Yoder, P.; Gartner, K.; Krumbein, U.; Fichtner, W. Optimized terminal current calculation for Monte Carlo device simulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1997, 16, 1082–1087. [Google Scholar] [CrossRef]
- Spear, W.E.; Comber, P.G.L. Transient mobility and lifetime studies in amorphous silicon and their interpretation. Philos. Mag. B 1985, 52, 247–260. [Google Scholar] [CrossRef]
- Okada, H.; Uchida, Y.; Matsumura, M. High-Mobility Amorphous-Silicon MOS Transistors. Jpn. J. Appl. Phys. 1986, 25, L718. [Google Scholar] [CrossRef]
- Marshall, J.M.; Street, R.A.; Thompson, M.J. Electron drift mobility in amorphous Si: H. Philos. Mag. B 1986, 54, 51–60. [Google Scholar] [CrossRef]
- Liang, J.; Schiff, E.A.; Guha, S.; Yan, B.; Yang, J. Hole-mobility limit of amorphous silicon solar cells. Appl. Phys. Lett. 2006, 88, 063512. [Google Scholar] [CrossRef]
- Schiff, E. Hole mobilities and the physics of amorphous silicon solar cells. J. Non Cryst. Solids 2006, 352, 1087–1092. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Zhang, W.; Yao, J. Invited Article: Electrically tunable silicon-based on-chip microdisk resonator for integrated microwave photonic applications. APL Photonics 2016, 1, 080801. [Google Scholar] [CrossRef]
- Chao, R.L.; Shi, J.W.; Jain, A.; Hirokawa, T.; Khope, A.S.; Schow, C.; Bowers, J.; Helkey, R.; Buckwalter, J.F. Forward bias operation of silicon photonic Mach Zehnder modulators for RF applications. Opt. Express 2017, 25, 23181. [Google Scholar] [CrossRef]
- Dev, S.; Singh, K.; Hosseini, R.; Misra, A.; Catuneanu, M.; Preusler, S.; Schneider, T.; Jamshidi, K. Compact and Energy-Efficient Forward-Biased PN Silicon Mach-Zehnder Modulator. IEEE Photonics J. 2022, 14, 6616507. [Google Scholar] [CrossRef]
- Alemany, R.; Muñoz, P.; Pastor, D.; Domínguez, C. Thermo-optic phase tuners analysis and design for process modules on a silicon nitride platform. Photonics 2021, 8, 496. [Google Scholar] [CrossRef]
Physical Parameter | a-Si | c-Si |
---|---|---|
( | 1.80 | 1.12 |
(/(V s)) | 1–25 | 1350 |
(/(V s)) | 0.01–6 | 480 |
11.8 | 11.7 | |
/ | 0.2–0.55 | 0.26 |
/ | 0.5–1 | 0.39 |
( | 10−7 | 10−6 |
( | 10−7 | 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Betanzos, J.; Blasco-Solvas, M.; Domínguez-Horna, C.; Faneca, J. Advancements in CMOS-Compatible Silicon Nitride Optical Modulators via Thin-Film Crystalline or Amorphous Silicon p–n Junctions. Photonics 2024, 11, 762. https://doi.org/10.3390/photonics11080762
Hernández-Betanzos J, Blasco-Solvas M, Domínguez-Horna C, Faneca J. Advancements in CMOS-Compatible Silicon Nitride Optical Modulators via Thin-Film Crystalline or Amorphous Silicon p–n Junctions. Photonics. 2024; 11(8):762. https://doi.org/10.3390/photonics11080762
Chicago/Turabian StyleHernández-Betanzos, Joaquín, Marçal Blasco-Solvas, Carlos Domínguez-Horna, and Joaquín Faneca. 2024. "Advancements in CMOS-Compatible Silicon Nitride Optical Modulators via Thin-Film Crystalline or Amorphous Silicon p–n Junctions" Photonics 11, no. 8: 762. https://doi.org/10.3390/photonics11080762
APA StyleHernández-Betanzos, J., Blasco-Solvas, M., Domínguez-Horna, C., & Faneca, J. (2024). Advancements in CMOS-Compatible Silicon Nitride Optical Modulators via Thin-Film Crystalline or Amorphous Silicon p–n Junctions. Photonics, 11(8), 762. https://doi.org/10.3390/photonics11080762