Research Progress on Applications of Metasurface-Based Optical Image Edge Detection Technology
Abstract
:1. Introduction
2. Phase-Controlled Metasurface Edge Detection Technology
2.1. P-B Phase Metasurfaces
2.1.1. Fundamental Principles of P-B Phase
2.1.2. Applications and Development of P-B Phase Metasurfaces
2.2. Laplace Metasurfaces
2.2.1. Fundamental Principles of Laplace Metasurfaces
2.2.2. Applications and Development of Laplace Metasurfaces
2.3. Other Phase-Controlled Metasurfaces
3. Polarization Modulation Metasurface Edge Detection Technology
3.1. Fundamental Principles of Polarization Modulation
3.2. Applications and Development of Polarization Modulation Metasurfaces
4. Dispersion Modulation Metasurface Edge Detection Technology
4.1. Fundamental Principles of Dispersion Modulation
4.2. Applications and Development of Dispersion Modulation Metasurfaces
5. Multifunctional Metasurface Edge Detection Technology
5.1. Dynamic Multifunctional Metasurfaces
5.2. Static Multifunctional Metasurfaces
6. Drawbacks and Prospects
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sobel, I. An Isotropic 3 × 3 Image Gradient Operater. In Machine Vision for Three-Dimensional Scenes; Academic Press: Cambridge, MA, USA, 1990; pp. 376–379. [Google Scholar]
- Freeman, H. Machine Vision for Three-Dimensional Scenes; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Goodman, J.W. Introduction to Fourier Optics; Roberts and Company publishers: Greenwood Village, CO, USA, 2005. [Google Scholar]
- Gupta, T.K.; Singh, B.P.; Singh, V.N.; Teotia, S.; Singh, A.P.; Elizabeth, I.; Dhakate, S.R.; Dhawan, S.; Mathur, R. MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J. Mater. Chem. A 2014, 2, 4256–4263. [Google Scholar] [CrossRef]
- Ritsch-Marte, M. Orbital angular momentum light in microscopy. Philos. Trans. R. Soc. A 2017, 375, 20150437. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Awan, W.A.; Alzaidi, M.S.; Hussain, N.; Ali, E.M.; Falcone, F. Metamaterials and their application in the performance enhancement of reconfigurable antennas: A review. Micromachines 2023, 14, 349. [Google Scholar] [CrossRef]
- Singh, A.P.; Mishra, M.; Sambyal, P.; Gupta, B.K.; Singh, B.P.; Chandra, A.; Dhawan, S. Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core–shell tubes as an exceptional tracker for electromagnetic environmental pollution. J. Mater. Chem. A 2014, 2, 3581–3593. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Bukhari, S.S.; Vardaxoglou, J.; Whittow, W. A metasurfaces review: Definitions and applications. Appl. Sci. 2019, 9, 2727. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, S.; Qian, H.; Li, Y.; Luo, H.; Wen, S.; Zhou, Z.; Guo, G.; Shi, B.; Liu, Z. Metasurface enabled quantum edge detection. Sci. Adv. 2020, 6, eabc4385. [Google Scholar] [CrossRef]
- Zheng, P.; Dai, Q.; Li, Z.; Ye, Z.; Xiong, J.; Liu, H.-C.; Zheng, G.; Zhang, S. Metasurface-based key for computational imaging encryption. Sci. Adv. 2021, 7, eabg0363. [Google Scholar] [CrossRef]
- Tseng, E.; Kuo, G.; Baek, S.-H.; Matsuda, N.; Maimone, A.; Schiffers, F.; Chakravarthula, P.; Fu, Q.; Heidrich, W.; Lanman, D. Neural étendue expander for ultra-wide-angle high-fidelity holographic display. Nat. Commun. 2024, 15, 2907. [Google Scholar] [CrossRef] [PubMed]
- Fürhapter, S.; Jesacher, A.; Bernet, S.; Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. Opt. Express 2005, 13, 689–694. [Google Scholar] [CrossRef]
- Song, H.; Zhang, Y.; Ren, Y.; Yuan, Z.; Zhao, D.; Zheng, Z.; Gao, L. Non-local edge enhanced imaging with incoherent thermal light. Appl. Phys. Lett. 2020, 116, 174001. [Google Scholar] [CrossRef]
- He, S.; Zhou, J.; Chen, S.; Shu, W.; Luo, H.; Wen, S. Wavelength-independent optical fully differential operation based on the spin–orbit interaction of light. APL Photon. 2020, 5, 036105. [Google Scholar] [CrossRef]
- Zhu, T.; Zhou, Y.; Lou, Y.; Ye, H.; Qiu, M.; Ruan, Z.; Fan, S. Plasmonic computing of spatial differentiation. Nat. Commun. 2017, 8, 15391. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, P.; Hu, X.; Wang, Z.; Li, Y.; Gong, L. Single-pixel spiral phase contrast imaging. Opt. Lett. 2020, 45, 4028–4031. [Google Scholar] [CrossRef]
- Xu, D.; He, S.; Zhou, J.; Chen, S.; Wen, S.; Luo, H. Optical analog computing of two-dimensional spatial differentiation based on the Brewster effect. Opt. Lett. 2020, 45, 6867–6870. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, H.; Kravchenko, I.I.; Valentine, J. Flat optics for image differentiation. Nat. Photon. 2020, 14, 316–323. [Google Scholar] [CrossRef]
- Huo, P.; Zhang, C.; Zhu, W.; Liu, M.; Zhang, S.; Zhang, S.; Chen, L.; Lezec, H.J.; Agrawal, A.; Lu, Y. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett. 2020, 20, 2791–2798. [Google Scholar] [CrossRef]
- Jang, M.; Horie, Y.; Shibukawa, A.; Brake, J.; Liu, Y.; Kamali, S.M.; Arbabi, A.; Ruan, H.; Faraon, A.; Yang, C. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photon. 2018, 12, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica 2017, 4, 139–152. [Google Scholar] [CrossRef]
- Pancharatnam, S. Generalized theory of interference, and its applications. Resonance 2013, 18, 387–389. [Google Scholar] [CrossRef]
- Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A. Math. Phys. Sci. 1984, 392, 45–57. [Google Scholar]
- Qiu, Y.; Tang, S.; Cai, T.; Xu, H.; Ding, F. Fundamentals and applications of spin-decoupled Pancharatnam—Berry metasurfaces. Front. Optoelectron. 2021, 14, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.; Chen, C.; Fu, R.; Zhou, Z.; Li, Z.; Zheng, G.; Yu, S.; Qiu, C.W.; Zhang, S. From lingering to rift: Metasurface decoupling for near- and far-field functionalization. Adv. Mater. 2021, 33, 2007507. [Google Scholar] [CrossRef]
- Shitrit, N.; Bretner, I.; Gorodetski, Y.; Kleiner, V.; Hasman, E. Optical spin Hall effects in plasmonic chains. Nano Lett. 2011, 11, 2038–2042. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef]
- Liu, S.J.; Chen, P.; Ge, S.J.; Zhu, L.; Zhang, Y.H.; Lu, Y.Q. 3D engineering of orbital angular momentum beams via liquid-crystal geometric phase. Laser Photon. Rev. 2022, 16, 2200118. [Google Scholar] [CrossRef]
- Khurgin, J.B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 2015, 10, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Marrucci, L.; Manzo, C.; Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 2006, 96, 163905. [Google Scholar] [CrossRef]
- Biener, G.; Niv, A.; Kleiner, V.; Hasman, E. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Opt. Lett. 2002, 27, 1875–1877. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Xiao, S.; He, Q.; Sun, S.; Zhou, L. Photonic spin Hall effect with nearly 100% efficiency. Adv. Opt. Mater. 2015, 3, 1102–1108. [Google Scholar] [CrossRef]
- Yin, X.; Ye, Z.; Rho, J.; Wang, Y.; Zhang, X. Photonic spin Hall effect at metasurfaces. Science 2013, 339, 1405–1407. [Google Scholar] [CrossRef]
- Luo, X.-G.; Pu, M.-B.; Li, X.; Ma, X.-L. Broadband spin Hall effect of light in single nanoapertures. Light Sci. Appl. 2017, 6, e16276. [Google Scholar] [CrossRef]
- Zhiqiang, X.; Yanliang, H.; Peipei, W.; Mingyang, S.; Xueyu, C.; Bo, Y.; Junmin, L.; Xinxing, Z.; Ying, L.; Shuqing, C. Two-Dimensional Optical Edge Detection Based on Pancharatnam-Berry Phase Metasurfaces. Acta Phys. Sin. 2020, 69, 14101. [Google Scholar]
- Xu, D.; Yang, H.; Xu, W.; Zhang, W.; Zeng, K.; Luo, H. Inverse design of Pancharatnam–Berry phase metasurfaces for all-optical image edge detection. Appl. Phys. Lett. 2022, 120, 241101. [Google Scholar] [CrossRef]
- Bi, X.; Guo, X.; Wu, X.; Fan, X.; Wei, B.; Wen, D.; Liu, S.; Zhao, J.; Li, P. Wideband optical edge detection based on dielectric metasurface. Appl. Phys. Lett. 2023, 123, 061702. [Google Scholar] [CrossRef]
- Tu, Y.; Li, R.; Xiong, Z.; Wu, H.; Ren, Y.; Liu, Z.; Sun, R.; Liu, T. Optical edge detection with adjustable resolution based on cascaded Pancharatnam–Berry lenses. Opt. Lett. 2023, 48, 3801–3804. [Google Scholar] [CrossRef]
- Solntsev, A.S.; Agarwal, G.S.; Kivshar, Y.S. Metasurfaces for quantum photonics. Nat. Photon. 2021, 15, 327–336. [Google Scholar] [CrossRef]
- Saba, A.; Tavakol, M.R.; Karimi-Khoozani, P.; Khavasi, A. Two-dimensional edge detection by guided mode resonant metasurface. IEEE Photon. Technol. Lett. 2018, 30, 853–856. [Google Scholar] [CrossRef]
- Wan, L.; Pan, D.; Yang, S.; Zhang, W.; Potapov, A.A.; Wu, X.; Liu, W.; Feng, T.; Li, Z. Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces. Opt. Lett. 2020, 45, 2070–2073. [Google Scholar] [CrossRef] [PubMed]
- Komar, A.; Aoni, R.A.; Xu, L.; Rahmani, M.; Miroshnichenko, A.E.; Neshev, D.N. Edge detection with Mie-resonant dielectric metasurfaces. ACS Photon. 2021, 8, 864–871. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Zheng, H.; Linares, A.E.; Ugwu, F.C.; Li, D.; Sun, H.-B.; Bai, B.; Valentine, J.G. Reconfigurable metasurface for image processing. Nano Lett. 2021, 21, 8715–8722. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Lai, L.; Su, Q.; Qiu, W.; Zhuo, L. Dual-band terahertz sensor with high-Q based on all-dielectric metasurfaces. Laser Optoelectron. Prog. 2022, 59, 1304004. [Google Scholar]
- Huang, W.; Liu, S.; Cheng, Y.; Han, J.; Yin, S.; Zhang, W. Universal coupled theory for metamaterial bound states in the continuum. New J. Phys. 2021, 23, 093017. [Google Scholar] [CrossRef]
- Liu, T.; Qiu, J.; Xu, L.; Qin, M.; Wan, L.; Yu, T.; Liu, Q.; Huang, L.; Xiao, S. Edge detection imaging by quasi-bound states in the continuum. Nano Lett. 2024, 24, 14466–14474. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Chen, Y.; Li, Y.; Li, J.; Zhao, R.; Tao, C.; Liu, C.; Bai, Y.; Li, X.; Wang, Y. Laplace Differentiator Based on Metasurface with Toroidal Dipole Resonance. Adv. Funct. Mater. 2024, 34, 2313777. [Google Scholar] [CrossRef]
- Pan, D.; Wan, L.; Ouyang, M.; Zhang, W.; Potapov, A.A.; Liu, W.; Liang, Z.; Feng, T.; Li, Z. Laplace metasurfaces for optical analog computing based on quasi-bound states in the continuum. Photon. Res. 2021, 9, 1758–1766. [Google Scholar] [CrossRef]
- Guo, C.; Xiao, M.; Minkov, M.; Shi, Y.; Fan, S. Photonic crystal slab Laplace operator for image differentiation. Optica 2018, 5, 251–256. [Google Scholar] [CrossRef]
- Zhang, L.; Mei, S.; Huang, K.; Qiu, C.W. Advances in full control of electromagnetic waves with metasurfaces. Adv. Opt. Mater. 2016, 4, 818–833. [Google Scholar] [CrossRef]
- Chen, S.; Li, Z.; Zhang, Y.; Cheng, H.; Tian, J. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Adv. Opt. Mater. 2018, 6, 1800104. [Google Scholar] [CrossRef]
- Tanaka, K.; Arslan, D.; Fasold, S.; Steinert, M.; Sautter, J.; Falkner, M.; Pertsch, T.; Decker, M.; Staude, I. Chiral bilayer all-dielectric metasurfaces. ACS Nano 2020, 14, 15926–15935. [Google Scholar] [CrossRef]
- Chen, M.-H.; Liu, Y.-L.; Su, V.-C. Gallium nitride-based geometric and propagation metasurfaces for vortex beam emissions. Heliyon 2024, 10, e25436. [Google Scholar] [CrossRef] [PubMed]
- Forouzmand, A.; Mosallaei, H. A tunable semiconductor-based transmissive metasurface: Dynamic phase control with high transmission level. Laser Photon. Rev. 2020, 14, 1900353. [Google Scholar] [CrossRef]
- Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 2015, 10, 937–943. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, J.; Su, R.; Yao, B.; Fang, H.; Li, K.; Zhou, L.; Liu, J.; Stellinga, D.; Reardon, C.P. Efficient silicon metasurfaces for visible light. ACS Photon. 2017, 4, 544–551. [Google Scholar] [CrossRef]
- Intaravanne, Y.; Ansari, M.A.; Ahmed, H.; Bileckaja, N.; Yin, H.; Chen, X. Metasurface-enabled 3-in-1 microscopy. ACS Photon. 2023, 10, 544–551. [Google Scholar] [CrossRef]
- Ma, A.; Intaravanne, Y.; Han, J.; Wang, R.; Chen, X. Polarization detection using light’s orbital angular momentum. Adv. Opt. Mater. 2020, 8, 2000484. [Google Scholar] [CrossRef]
- Intaravanne, Y.; Han, J.; Wang, R.; Ma, A.; Li, S.; Chen, S.; Chen, X. Phase Manipulation-Based Polarization Profile Realization and Hybrid Holograms Using Geometric Metasurface. Adv. Photon. Res. 2021, 2, 2000046. [Google Scholar] [CrossRef]
- Ghosh, N.; Vitkin, I.A. Tissue polarimetry: Concepts, challenges, applications, and outlook. J. Biomed. Opt. 2011, 16, 110801. [Google Scholar] [CrossRef]
- Wang, Y.; He, H.; Chang, J.; Zeng, N.; Liu, S.; Li, M.; Ma, H. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope. Micron 2015, 79, 8–15. [Google Scholar] [CrossRef]
- Song, X.; Huang, L.; Tang, C.; Li, J.; Li, X.; Liu, J.; Wang, Y.; Zentgraf, T. Selective diffraction with complex amplitude modulation by dielectric metasurfaces. Adv. Opt. Mater. 2018, 6, 1701181. [Google Scholar] [CrossRef]
- Liu, S.; Chen, S.; Wen, S.; Luo, H. Photonic spin Hall effect: Fundamentals and emergent applications. Opto-Electron. Sci. 2022, 1, 220007. [Google Scholar] [CrossRef]
- Ling, X.; Zhou, X.; Huang, K.; Liu, Y.; Qiu, C.-W.; Luo, H.; Wen, S. Recent advances in the spin Hall effect of light. Rep. Prog. Phys. 2017, 80, 066401. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Huang, G.; Chen, H.; Feng, X.; Qiu, J.; Luo, K.; Peng, L.; Liu, D.; Han, P. High-NA polarization-independent isotropic spatial differential metasurface. Photon. Nanostr. Fundam. Appl. 2023, 53, 101107. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, S.; Dai, X.; Huang, M.; Yu, X. All-optical image edge detection based on the two-dimensional photonic spin Hall effect in anisotropic metamaterial. Opt. Express 2023, 31, 6062–6075. [Google Scholar] [CrossRef] [PubMed]
- Cotrufo, M.; Singh, S.; Arora, A.; Majewski, A.; Alù, A. Polarization imaging and edge detection with image-processing metasurfaces. Optica 2023, 10, 1331–1338. [Google Scholar] [CrossRef]
- Tang, P.; Kim, Y.; Badloe, T.; Xiao, L.; Yang, Y.; Kim, M.; Rho, J.; Li, G. Polarization-independent edge detection based on the spin–orbit interaction of light. Opt. Express 2024, 32, 17560–17570. [Google Scholar] [CrossRef] [PubMed]
- Brabec, T.; Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 2000, 72, 545. [Google Scholar] [CrossRef]
- Weiner, A.M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 2000, 71, 1929–1960. [Google Scholar] [CrossRef]
- Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 1985, 55, 447–449. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Kipp, L.; Skibowski, M.; Johnson, R.; Berndt, R.; Adelung, R.; Harm, S.; Seemann, R. Sharper images by focusing soft X-rays with photon sieves. Nature 2001, 414, 184–188. [Google Scholar] [CrossRef]
- Du, H.; Zhou, W.; Luo, F.; Zhu, D.; Qu, S.; Pei, Z. An approach to further improve piezoelectric properties of (K0.5Na0.5) NbO3-based lead-free ceramics. Appl. Phys. Lett. 2007, 91, 202907. [Google Scholar] [CrossRef]
- Asadchy, V.S.; Albooyeh, M.; Tcvetkova, S.N.; Díaz-Rubio, A.; Ra’di, Y.; Tretyakov, S.A. Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B 2016, 94, 075142. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Pu, M.; Zhao, Z.; Ma, X.; Wang, Y.; Luo, X. Achromatic flat optical components via compensation between structure and material dispersions. Sci. Rep. 2016, 6, 19885. [Google Scholar] [CrossRef] [PubMed]
- Khorasaninejad, M.; Shi, Z.; Zhu, A.Y.; Chen, W.-T.; Sanjeev, V.; Zaidi, A.; Capasso, F. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 2017, 17, 1819–1824. [Google Scholar] [CrossRef] [PubMed]
- Cotrufo, M.; Arora, A.; Singh, S.; Alù, A. Dispersion engineered metasurfaces for broadband, high-NA, high-efficiency, dual-polarization analog image processing. Nat. Commun. 2023, 14, 7078. [Google Scholar] [CrossRef]
- Du, K.; Barkaoui, H.; Zhang, X.; Jin, L.; Song, Q.; Xiao, S. Optical metasurfaces towards multifunctionality and tunability. Nanophotonics 2022, 11, 1761–1781. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Shankar, R.; Kats, M.A.; Song, Y.; Kong, J.; Loncar, M.; Capasso, F. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 2014, 14, 6526–6532. [Google Scholar] [CrossRef]
- Sautter, J.; Staude, I.; Decker, M.; Rusak, E.; Neshev, D.N.; Brener, I.; Kivshar, Y.S. Active tuning of all-dielectric metasurfaces. ACS Nano 2015, 9, 4308–4315. [Google Scholar] [CrossRef]
- Chmielak, B.; Waldow, M.; Matheisen, C.; Ripperda, C.; Bolten, J.; Wahlbrink, T.; Nagel, M.; Merget, F.; Kurz, H. Pockels effect based fully integrated, strained silicon electro-optic modulator. Opt. Express 2011, 19, 17212–17219. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Jenkins, R.P.; Werner, D.H. Recent progress in active optical metasurfaces. Adv. Opt. Mater. 2019, 7, 1801813. [Google Scholar] [CrossRef]
- Hail, C.U.; Michel, A.K.U.; Poulikakos, D.; Eghlidi, H. Optical metasurfaces: Evolving from passive to adaptive. Adv. Opt. Mater. 2019, 7, 1801786. [Google Scholar] [CrossRef]
- Cui, T.; Bai, B.; Sun, H.B. Tunable metasurfaces based on active materials. Adv. Funct. Mater. 2019, 29, 1806692. [Google Scholar] [CrossRef]
- Goi, E.; Zhang, Q.; Chen, X.; Luan, H.; Gu, M. Perspective on photonic memristive neuromorphic computing. PhotoniX 2020, 1, 3. [Google Scholar] [CrossRef]
- Yamada, N. Origin, secret, and application of the ideal phase-change material GeSbTe. Phys. Status Solidi B 2012, 249, 1837–1842. [Google Scholar] [CrossRef]
- Michel, A.-K.U.; Zalden, P.; Chigrin, D.N.; Wuttig, M.; Lindenberg, A.M.; Taubner, T. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. Acs Photon. 2014, 1, 833–839. [Google Scholar] [CrossRef]
- Du, K.-K.; Li, Q.; Lyu, Y.-B.; Ding, J.-C.; Lu, Y.; Cheng, Z.-Y.; Qiu, M. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light Sci. Appl. 2017, 6, e16194. [Google Scholar] [CrossRef] [PubMed]
- Jie, H.; Ziyi, T.; Xiang, L.; Qinrong, D.; Wenting, Z.; Yijia, H.; Ling, L. Switchable Edge Detection and Focusing Imaging Metasurfaces Based on Phase Change Material Ge2Sb2Se4Te1. Opto-Electron. Eng. 2023, 50, 220284. [Google Scholar]
- Kats, M.A.; Blanchard, R.; Genevet, P.; Yang, Z.; Qazilbash, M.M.; Basov, D.; Ramanathan, S.; Capasso, F. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt. Lett. 2013, 38, 368–370. [Google Scholar] [CrossRef]
- Shu, F.Z.; Yu, F.F.; Peng, R.W.; Zhu, Y.Y.; Xiong, B.; Fan, R.H.; Wang, Z.H.; Liu, Y.; Wang, M. Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv. Opt. Mater. 2018, 6, 1700939. [Google Scholar] [CrossRef]
- Song, S.; Ma, X.; Pu, M.; Li, X.; Guo, Y.; Gao, P.; Luo, X. Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber. Photon. Res. 2018, 6, 492–497. [Google Scholar] [CrossRef]
- Jia, Z.-Y.; Shu, F.-Z.; Gao, Y.-J.; Cheng, F.; Peng, R.-W.; Fan, R.-H.; Liu, Y.; Wang, M. Dynamically switching the polarization state of light based on the phase transition of vanadium dioxide. Phys. Rev. Appl. 2018, 9, 034009. [Google Scholar] [CrossRef]
- Liu, L.; Kang, L.; Mayer, T.S.; Werner, D.H. Hybrid metamaterials for electrically triggered multifunctional control. Nat. Commun. 2016, 7, 13236. [Google Scholar] [CrossRef] [PubMed]
- Cotrufo, M.; Sulejman, S.B.; Wesemann, L.; Rahman, M.A.; Bhaskaran, M.; Roberts, A.; Alù, A. Reconfigurable image processing metasurfaces with phase-change materials. Nat. Commun. 2024, 15, 4483. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; He, X.-j.; Jiang, J.; Yao, Y.; Zhang, Y. Polarization-multiplexing graphene-based coding metasurface for flexible terahertz wavefront control. Phys. Scr. 2024, 99, 075538. [Google Scholar] [CrossRef]
- Wu, M.; He, X.; Lu, G.; Geng, Z.; Zhang, Y. Multi-mode non-diffraction vortex beams enabled by polarization-frequency multiplexing transmissive terahertz metasurfaces. J. Appl. Phys. 2024, 136, 103102. [Google Scholar] [CrossRef]
- Wang, D.; He, X.; Jiang, J.; Yao, Y.; Zhang, Y. Full-space energy-controlled multi-wavefront generators enabled by hybrid graphene-VO2 terahertz metasurfaces. Diam. Relat. Mater. 2024, 146, 111240. [Google Scholar] [CrossRef]
- Shirmanesh, G.K.; Sokhoyan, R.; Wu, P.C.; Atwater, H.A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 2020, 14, 6912–6920. [Google Scholar] [CrossRef]
- Luo, M.; Xu, T.; Xiao, S.; Tsang, H.K.; Shu, C.; Huang, C. Meta-Optics Based Parallel Convolutional Processing for Neural Network Accelerator. Laser Photon. Rev. 2024, 18, 2300984. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, X.; Rukhlenko, I.D.; Chen, H.-T.; Zhu, W. Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photon. 2019, 7, 265–271. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, W.; Huo, P.; Feng, L.; Song, M.; Zhang, C.; Chen, L.; Lezec, H.J.; Lu, Y.; Agrawal, A. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci. Appl. 2021, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wei, Q.; Zhao, R.; Li, X.; Zhang, X.; Li, Y.; Li, J.; Jing, X.; Li, X.; Wang, Y. Realizing depth measurement and edge detection based on a single metasurface. Nanophotonics 2023, 12, 3385–3393. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Li, J.; Wang, Z.; Li, X.; Sun, J.; Wang, J.; Fang, B.; Chen, C.; Ye, X.; Zhu, S. On-chip multifunctional metasurfaces with full-parametric multiplexed Jones matrix. Nat. Commun. 2024, 15, 8271. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Zheng, B.; Tang, H.; Shalaginov, M.Y.; Zhou, L.; Li, H.; Kang, M.; Richardson, K.A.; Gu, T.; Hu, J. Multifunctional metasurface design with a generative adversarial network. Adv. Opt. Mater. 2021, 9, 2001433. [Google Scholar] [CrossRef]
Name | Structure | Principle | Implementation Effect | References |
---|---|---|---|---|
Optical Resonator Array | Composed of V-shaped metallic antenna units. | Redefines the laws of reflection and refraction by introducing a linear phase gradient at the interface. | Enables arbitrary-angle reflection and refraction, generating optical vortices with orbital angular momentum. | [10] |
Chiral Dielectric Metasurface | Consists of two silicon nanocubes embedded in a glass layer. | Resonance modes of electric dipoles and magnetic dipoles are used to enhance chiral optical response through multipole resonance. | Employs sputtered silicon material with low absorption loss, achieving high efficiency in the near-infrared range. | [54] |
Propagation Phase Metasurface | Utilizes high-aspect-ratio gallium nitride (GaN) meta-atoms with fin-shaped and cylindrical geometries. | Achieves annular light intensity focusing and optical property optimization within specific wavelength ranges through phase manipulation. | Capable of high optical performance but exhibits significant chromatic aberration due to dispersion limitations. | [55] |
Transmission Metasurface | Silicon nanorod arrays sandwiched between two DBR layers. | Leverages the combined effects of guided-mode resonance and Fabry–Pérot resonance. | Enables dynamic phase control and high transmission efficiency. | [56] |
Dielectric Metasurface | Amorphous silicon nanopillars placed on a quartz substrate. | Controls the symmetry and unitarity of the Jones matrix by adjusting the geometric parameters of elliptical pillars, achieving phase and polarization conversion of the optical field. | Generates arbitrary spatially varying polarization and phase distributions, enabling dual-function optical patterns for polarization switching. | [57] |
Dielectric Metasurface | Crystalline silicon is transferred onto a quartz substrate via an SOI wafer process. | Achieves phase coverage from 0 to 2π by adjusting the cylinder diameter. | Experimental transmission efficiency is 47%, with theoretical optimization potentially reaching 71%; due to the symmetry of the cylindrical structure, it is insensitive to polarization states. | [58] |
Type | Principle | Application | References |
---|---|---|---|
Graphene-Based Polarization-Multiplexing Coding Metasurface | Achieves dynamic wavefront control by tuning the Fermi level and utilizing the Pancharatnam–Berry (P-B) phase. | Generates vortex beams, multi-directional reflected beams, and specularly reflected beams. Also functions as a dynamic metalens for high-capacity THz communication. | [99] |
Polarization-Frequency Multiplexing Transmissive THz Metasurface | Utilizes the phase transition properties of vanadium dioxide (VO2) to switch between metallic and insulating states, combined with polarization and frequency multiplexing. | Enables high-capacity, long-distance THz communication, suitable for 6G technologies. Extends the application of dynamic metasurfaces. | [100] |
Graphene and VO2-Based Multi-Wavefront Generator | Integrates dual dynamic control mechanisms using graphene’s electrically tunable properties and VO2’s thermal phase transition. | Generates diverse wavefronts, such as deflected beams, dynamic metalenses, and orbital angular momentum (OAM) beams. Applicable to THz communication, high-resolution imaging, and quantum information processing. | [101] |
Tunable Holographic Metasurfaces | Using the modulation characteristics of electro-optic materials, these metasurfaces can reconfigure the phase and amplitude of light waves to meet different optical requirements. | Researchers proposed tunable holographic metasurfaces that not only enable dynamic beam deflection but also generate real-time updated holographic images for different application scenarios. | [102] |
Quantum Optics-Based Metasurface | Based on the principle of P-B phase and quantum entangled photon pairs generated by spontaneous parametric down-conversion (SPDC). | Researchers rely on the non-locality of quantum entanglement, and by detecting the polarization state of entangled photons, they can switch between normal imaging mode and edge detection mode. | [11] |
Tunable Metasurface | Utilizes Mie resonance and metalens focusing design to adjust optical transmission parameters, achieves precise control of convolution kernel weights, and simultaneously reduces optical crosstalk. | By leveraging Mie resonance to tune convolution kernel weights and combining it with metalens focusing functionality, it is applied to low-power optical computing, achieving high-precision (6.4-bit computational accuracy) optical convolution operations. | [103] |
Graphene-Based Multifunctional Metasurface | By altering the bias voltage between the two graphene layers in a graphene sandwich structure, the Fermi level is tuned, thereby changing its electromagnetic properties. | Researchers designed a dynamically tunable reflective metasurface, where the reflection amplitude and response frequency can be controlled by two independent voltage sources. | [104] |
Type | Principle | Application | References |
---|---|---|---|
Multifunctional Modulated Metasurfaces | By multidimensional control, metasurfaces are designed to simultaneously achieve multiple functions. | Liu et al. proposed an all-dielectric metasurface that independently controls the amplitude and phase of the polarization state at visible light frequencies, realizing polarization-dependent complex amplitude holography. | [105] |
All-Dielectric Metasurfaces | By leveraging fixed geometric phases and nanostructure designs, static metasurfaces achieve multi-dimensional control of light. | Realizing depth measurement using DH-PSF under incoherent light and edge detection under coherent light conditions. | [106] |
On-Chip Integrated Multifunctional Metasurfaces | Utilize geometric phase, propagation phase, and detour phase to achieve full-parametric multiplexing of the Jones matrix. | Optical communication: channel multiplexing and on-chip optical data processing;Optical display and AR: high-quality holographic projections;Light field manipulation: generating holograms and OAM beams. | [107] |
Deep Learning-Based Multifunctional Metasurfaces | By using a specific framework and training mechanism to train Generative Adversarial Networks (GANs), metasurfaces with multiple functions are designed. | Researchers utilized a bipolar unit cell generator network design and verified the effectiveness of this design method in realizing polarization-independent lenses through full-wave simulation of electric field distributions. | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Sun, Q.; Abbas, T.; Ge, H.; Li, G.; Jia, K.; Bu, Y.; Zheng, H. Research Progress on Applications of Metasurface-Based Optical Image Edge Detection Technology. Photonics 2025, 12, 75. https://doi.org/10.3390/photonics12010075
Jiang Y, Sun Q, Abbas T, Ge H, Li G, Jia K, Bu Y, Zheng H. Research Progress on Applications of Metasurface-Based Optical Image Edge Detection Technology. Photonics. 2025; 12(1):75. https://doi.org/10.3390/photonics12010075
Chicago/Turabian StyleJiang, Yuying, Qingcheng Sun, Tauseef Abbas, Hongyi Ge, Guangming Li, Keke Jia, Yuwei Bu, and Huifang Zheng. 2025. "Research Progress on Applications of Metasurface-Based Optical Image Edge Detection Technology" Photonics 12, no. 1: 75. https://doi.org/10.3390/photonics12010075
APA StyleJiang, Y., Sun, Q., Abbas, T., Ge, H., Li, G., Jia, K., Bu, Y., & Zheng, H. (2025). Research Progress on Applications of Metasurface-Based Optical Image Edge Detection Technology. Photonics, 12(1), 75. https://doi.org/10.3390/photonics12010075