InP/Si3N4 Hybrid Integrated Lasers for RF Local Oscillator Signal Generation in Satellite Payloads
Abstract
:1. Introduction
2. Hybrid Multi-Laser Module
3. Experimental Results
3.1. Experimental Setup
3.2. Characterization of Single-Gain Lasers
3.3. Dual LO Generation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anzalchi, J.; Inigo, P.; Roy, B. Application of photonics in next generation telecommunication satellites payloads. Int. Conf. Space Opt. (ICSO) 2014, 10563, 1063–1071. [Google Scholar]
- Vono, S.; Di Paolo, G.; Piccinni, M.; Pisano, A.; Sotom, M.; Aveline, M.; Ginestet, P. Towards telecommunication payloads with photonic technologies. Int. Conf. Space Opt. (ICSO) 2014, 10563, 1054–1062. [Google Scholar]
- Logan Jr, R.T.; Basuita, D. Mass-reduction of high-speed spacecraft datalinks enabled by rugged photonic transceivers. Int. Conf. Space Opt. (ICSO) 2018, 11180, 1618–1628. [Google Scholar]
- Marpaung, D.; Yao, J.; Capmany, J. Integrated microwave photonics. Nat. Photonics 2019, 13, 80–90. [Google Scholar] [CrossRef]
- Zhu, D.; Shao, L.; Yu, M.; Cheng, R.; Desiatov, B.; Xin, C.J.; Hu, Y.; Holzgrafe, J.; Ghosh, S.; Shams-Ansari, A.; et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 2021, 13, 242–352. [Google Scholar] [CrossRef]
- Vazimali, M.G.; Fathpour, S. Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photonics 2022, 4, 034001. [Google Scholar] [CrossRef]
- Augustin, L.M.; Santos, R.; Den Haan, E.; Kleijn, S.; Thijs, P.J.; Latkowski, S.; Zhao, D.; Yao, W.; Bolk, J.; Ambrosius, H.; et al. InP-based generic foundry platform for photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 1–10. [Google Scholar] [CrossRef]
- Smit, M.; Williams, K.; Van Der Tol, J. Past, present, and future of InP-based photonic integration. APL Photonics 2019, 1–10. [Google Scholar] [CrossRef]
- Sharma, T.; Wang, J.; Kaushik, B.K.; Cheng, Z.; Kumar, R.; Wei, Z.; Li, X. Review of recent progress on silicon nitride-based photonic integrated circuits. IEEE Access 2020, 8, 195436–195446. [Google Scholar] [CrossRef]
- Xiang, C.; Jin, W.; Bowers, J.E. Silicon nitride passive and active photonic integrated circuits: Trends and prospects. Photonics Res. 2022, 10, A82–A96. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, Y.; Zhu, L. Loss induced coherent combining in InP-Si3N4 hybrid platform. Sci. Rep. 2018, 8, 878. [Google Scholar] [CrossRef]
- Ibrahimi, Y.; Boust, S.; Wilmart, Q.; Paret, J.F.; Garreau, A.; Mekhazni, K.; Fortin, C.; Duport, F.; Fedeli, J.-M.; Sciancalepore, C.; et al. Low FSR mode-locked laser based on InP-Si3N4 hybrid integration. J. Light. Technol. 2021, 39, 7573–7580. [Google Scholar] [CrossRef]
- Göbel, T.; Stanze, D.; Troppenz, U.; Kreissl, J.; Sartorius, B.; Schell, M. Integrated continuous-wave THz control unit with 1 THz tuning range. In Proceedings of the 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves, Wollongong, NSW, Australia, 23–28 September 2012; pp. 1–3. [Google Scholar]
- Theurer, M.; Göbel, T.; Stanze, D.; Troppenz, U.; Soares, F.; Grote, N.; Schell, M. Photonic-integrated circuit for continuous-wave THz generation. Opt. Lett. 2013, 38, 3724–3726. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Delmade, A.; Browning, C.; Verolet, T.; Poette, J.; Farhang, A.; Elwan, H.H.; Koilpillai, R.D.; Aubin, G.; Lelarge, F.; Ramdane, A.; et al. Optical heterodyne analog radio-over-fiber link for millimeter-wave wireless systems. J. Light. Technol. 2020, 39, 465–474. [Google Scholar] [CrossRef]
- Guzmán, R.; González, L.; Zarzuelo, A.; Cesar Cuello, J.; Ali, M.; Visscher, I.; Grootjans, R.; Epping, J.P.; Roeloffzen, C.G.H.; Carpintero, G. Widely tunable RF signal generation using an InP/Si3N4 hybrid integrated dual-wavelength optical heterodyne source. J. Light. Technol. 2021, 39, 7664–7671. [Google Scholar] [CrossRef]
- Lipka, M.; Parniak, M.; Wasilewski, W. Optical frequency locked loop for long-term stabilization of broad-line DFB laser frequency difference. Appl. Phys. B 2017, 123, 1–7. [Google Scholar] [CrossRef]
- Wörhoff, K.; Heideman, R.G.; Leinse, A.; Hoekman, M. TriPleX: A versatile dielectric photonic platform. Adv. Opt. Technol. 2015, 4, 189–207. [Google Scholar] [CrossRef]
- Fan, Y.; van Rees, A.; Van der Slot, P.J.M.; Mak, J.; Oldenbeuving, R.M.; Hoekman, M.; Geskus, D.; Roeloffzen, C.G.; Boller, K.J. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express 2020, 28, 21713–21728. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.D.; Bartelt, H.; Frazão, O. Optical Vernier effect: Recent advances and developments. Laser Photonics Rev. 2021, 15, 2000588. [Google Scholar] [CrossRef]
- Saleh, B.E.; Teich, M.C. Fundamentals of Photonics; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- César-Cuello, J.; Zarzuelo, A.; Mitsolidou, C.; Guerrero, L.G.; Timens, R.B.; Van Dijk, P.W.; Roeloffzen, C.G.; Delgado, J.M.; Carpintero, G. Integrated Photonics-Based Electrical Multicarrier Generation System for Satellite Communications in the Ka and V Bands. In Proceedings of the International Topical Meeting on Microwave Photonics (MWP), Pisa, Italy, 17–20 September 2024; pp. 1–4. [Google Scholar]
- Van Dijk, F.; Accard, A.; Enard, A.; Drisse, O.; Make, D.; Lelarge, F. Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation. In Proceedings of the International Topical Meeting on Microwave Photonics, Singapore, 18–21 October 2011; pp. 73–76. [Google Scholar]
- Lo, Y.H.; Wu, Y.C.; Hsu, S.C.; Hwang, Y.C.; Chen, B.C.; Lin, C.C. Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser. Opt. Express 2014, 22, 13125–13137. [Google Scholar] [CrossRef]
Laser | ISOA [mA] | VR1 [V] | VR2 [V] | VH1 [V] | VH3 [V] |
---|---|---|---|---|---|
Laser 2 | 103 | 6.6 | 8 | 3.6 | 5.3 |
Laser 3 | 152 | 4.2 | 13.1 | 7.21 | 7 |
Laser 4 | 134 | 12.6 | 13.6 | 2.1 | 10.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
César-Cuello, J.; Zarzuelo, A.; Guzmán, R.C.; Mitsolidou, C.; Visscher, I.; Timens, R.B.; Dijk, P.W.L.V.; Roeloffzen, C.G.H.; González, L.; Delgado Mendinueta, J.M.; et al. InP/Si3N4 Hybrid Integrated Lasers for RF Local Oscillator Signal Generation in Satellite Payloads. Photonics 2025, 12, 77. https://doi.org/10.3390/photonics12010077
César-Cuello J, Zarzuelo A, Guzmán RC, Mitsolidou C, Visscher I, Timens RB, Dijk PWLV, Roeloffzen CGH, González L, Delgado Mendinueta JM, et al. InP/Si3N4 Hybrid Integrated Lasers for RF Local Oscillator Signal Generation in Satellite Payloads. Photonics. 2025; 12(1):77. https://doi.org/10.3390/photonics12010077
Chicago/Turabian StyleCésar-Cuello, Jessica, Alberto Zarzuelo, Robinson C. Guzmán, Charoula Mitsolidou, Ilka Visscher, Roelof B. Timens, Paulus W. L. Van Dijk, Chris G. H. Roeloffzen, Luis González, José Manuel Delgado Mendinueta, and et al. 2025. "InP/Si3N4 Hybrid Integrated Lasers for RF Local Oscillator Signal Generation in Satellite Payloads" Photonics 12, no. 1: 77. https://doi.org/10.3390/photonics12010077
APA StyleCésar-Cuello, J., Zarzuelo, A., Guzmán, R. C., Mitsolidou, C., Visscher, I., Timens, R. B., Dijk, P. W. L. V., Roeloffzen, C. G. H., González, L., Delgado Mendinueta, J. M., & Carpintero, G. (2025). InP/Si3N4 Hybrid Integrated Lasers for RF Local Oscillator Signal Generation in Satellite Payloads. Photonics, 12(1), 77. https://doi.org/10.3390/photonics12010077