Photonics: 10th Anniversary

A special issue of Photonics (ISSN 2304-6732).

Deadline for manuscript submissions: 31 March 2025 | Viewed by 24387

Special Issue Editors


grade E-Mail Website
Guest Editor
School of Electrical and Electronic Engineering (EEE), The University of Adelaide, Adelaide, SA 5005, Australia
Interests: photonics; nanoelectronics; quantum devices; semiconductor lasers; VCSELs; III-nitride semiconductors; GaN semiconductors; III-V and III-V-nitrides; III-oxide technologies; LED technologies; MOCVD; epitaxy; MBE; power electronics; integrated technologies; biomedical devices and systems; computational sciences for nanoscales; machine learning/AI; quantum materials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
Interests: biomedical optics; diffuse optical imaging; functional near-infrared spectroscopy; quantitative tissue oximetry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Photonics is an international, scientific, peer-reviewed, open access journal on the science and technology of optics and photonics, published monthly online by MDPI. Since the release of its inaugural issue as a quarterly journal in 2014, Photonics has undergone a remarkable journey. (https://www.mdpi.com/journal/photonics/history).

The year 2024 will mark the 10th-anniversary volume of Photonics, and we wish to mark this significant milestone by publishing a commemorative Special Issue entitled “Photonics: 10th Anniversary”. This Special Issue will be a collection of high-quality reviews and original research articles within the field of optics and photonics (https://www.mdpi.com/journal/photonics/about).

Prof. Dr. Nelson Tansu
Prof. Dr. Sergio Fantini
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Photonics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • optics
  • photonics
  • biophotonics
  • optoelectronics
  • optical communication
  • lasers
  • light sources
  • optical sensors
  • quantum photonics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (20 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 2273 KiB  
Article
Demonstration of Quantum Polarized Microscopy Using an Entangled-Photon Source
by Mousume Samad, Maki Shimizu and Yasuto Hijikata
Photonics 2025, 12(2), 127; https://doi.org/10.3390/photonics12020127 - 31 Jan 2025
Viewed by 403
Abstract
With the advancement of non-classical light sources such as single-photon and entangled-photon sources, innovative microscopy based on quantum principles has been proposed for traditional microscopy. This paper introduces the experimental demonstration of a quantum polarization microscopic technique that incorporates a quantum-entangled photon source. [...] Read more.
With the advancement of non-classical light sources such as single-photon and entangled-photon sources, innovative microscopy based on quantum principles has been proposed for traditional microscopy. This paper introduces the experimental demonstration of a quantum polarization microscopic technique that incorporates a quantum-entangled photon source. Although the point that employs the variation in polarization angle due to reflection or transmission at the sample is similar to classical polarization microscopy, the method for constructing the image contrast is significantly different. The image contrast is constructed by the coincidence count of signal and idler photons. In the case that the coincidence count is recorded from both the signal and idler photons, the photon statistics resemble a thermal state, similar to the blackbody radiation, but with a significantly higher peak intensity in the second-order autocorrelation function at zero delay that is derived from the coincidence count, while, when the coincidence count is taken from either the signal or idler photon only, although the photon state exhibits a thermal state again, the photon statistics become more dispersive and result in a lower peak intensity of the autocorrelation function. These different thermal states can be switched by slightly changing the photon polarization, which is suddenly aroused within a narrow range of the analyzer angle. The autocorrelation function g2(0) at the thermal state exhibits a sensitivity that is three times higher compared to the classical coincidence count rate, and this concept can be effectively utilized to enhance the contrast of the image. One of the key achievements of our proposed method is ensuring a low power of illumination (in the order of Pico-joules) for constructing the image. In addition, the robustness without any precise setup is also favorable for practical use. This polarization microscopic technique can provide a superior imaging technique compared to the classical method, opening a new frontier for research in material sciences, biology, and other fields requiring high-resolution imaging. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

19 pages, 7308 KiB  
Article
New Insights Reached via Graded-Interfaces Modeling: How High-Power, High-Efficiency Mid-Infrared QCLs Work
by Dan Botez, Suraj Suri, Huilong Gao, Thomas Grange, Jeremy D. Kirch, Luke J. Mawst and Robert A. Marsland
Photonics 2025, 12(2), 93; https://doi.org/10.3390/photonics12020093 - 21 Jan 2025
Viewed by 533
Abstract
Graded-interfaces modeling unveils key features of high-power, high-efficiency quantum-cascade lasers (QCLs): direct resonant-tunneling injection from a prior-stage, low-energy state into the upper-laser (ul) level, over a wide (~50 nm) multiple-barrier region; and a new type of photon-induced carrier transport (PICT). Stage-level [...] Read more.
Graded-interfaces modeling unveils key features of high-power, high-efficiency quantum-cascade lasers (QCLs): direct resonant-tunneling injection from a prior-stage, low-energy state into the upper-laser (ul) level, over a wide (~50 nm) multiple-barrier region; and a new type of photon-induced carrier transport (PICT). Stage-level QCL operation primarily involves two steps: injection into the ul level and photon-assisted diagonal transition. Furthermore, under certain conditions, a prior-stage low-energy state, extending deep into the next stage, is the ul level, thus making such devices injectionless QCLs and leading to stronger PICT action due to quicker gain recovery. Thermalization within a miniband ensures population inversion between a state therein and a state in the next miniband. Using graded-interfaces modeling, step-tapered active-region (STA) QCLs possessing PICT action have been designed for carrier-leakage suppression. A preliminary 4.6 µm emitting STA design of a metal–organic chemical-vapor deposition (MOCVD)-grown QCL led to an experimental 19.1% front-facet, peak wall-plug efficiency (WPE). Pure, diffraction-limited beam operation is obtained at 1.3 W CW power. A low-leakage 4.7 µm emitting design provides a projected 24.5% WPE value, considering MOCVD-growth, graded-interface interface-roughness (IFR) parameters, and waveguide loss (αw). The normalized leakage-current density, Jleak/Jth, is 17.5% vs. 28% for the record-WPE 4.9 µm emitting QCL. Then, when considering the IFR parameters and αw values of optimized-crystal-growth QCLs, Jleak/Jth decreases to 13.5%, and the front-facet WPE value reaches 33%, thus approaching the ~41% fundamental limit. The potential of graded-interfaces modeling to become the design tool for achieving room-temperature operation of terahertz QCLs is discussed. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

13 pages, 5328 KiB  
Article
InP/Si3N4 Hybrid Integrated Lasers for RF Local Oscillator Signal Generation in Satellite Payloads
by Jessica César-Cuello, Alberto Zarzuelo, Robinson C. Guzmán, Charoula Mitsolidou, Ilka Visscher, Roelof B. Timens, Paulus W. L. Van Dijk, Chris G. H. Roeloffzen, Luis González, José Manuel Delgado Mendinueta and Guillermo Carpintero
Photonics 2025, 12(1), 77; https://doi.org/10.3390/photonics12010077 - 16 Jan 2025
Viewed by 507
Abstract
This paper presents an integrated tunable hybrid multi-laser module designed to simultaneously generate multiple radiofrequency (RF) local oscillator (LO) signals through optical heterodyning. The device consists of five hybrid InP/Si3N4 integrated lasers, each incorporating an intracavity wavelength-selective optical filter formed [...] Read more.
This paper presents an integrated tunable hybrid multi-laser module designed to simultaneously generate multiple radiofrequency (RF) local oscillator (LO) signals through optical heterodyning. The device consists of five hybrid InP/Si3N4 integrated lasers, each incorporating an intracavity wavelength-selective optical filter formed by two micro-ring resonators. Through beating the wavelengths generated from three of these lasers, we demonstrate the simultaneous generation of two LO signals within bands crucial for satellite communications (SatCom): one in the Ka-band and the other in the V-band. The device provides an extensive wavelength tuning range across the entire C-band and exhibits exceptionally narrow optical linewidths, below 40 kHz in free-running mode. This results in ultra-wideband tunable RF signals with narrow electrical linewidths below 100 kHz. The system is compact and highly scalable, with the potential to generate up to 10 simultaneous LO signals, being a promising solution for advanced RF signal generation in high throughput satellite payloads. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

8 pages, 4939 KiB  
Communication
A High-Peak-Power Mechanically Q-Switched Tb:LiYF4 Laser in the Green Spectral Region
by Linpeng Yu, Haotian Yang, Hiyori Uehara and Ryo Yasuhara
Photonics 2025, 12(1), 58; https://doi.org/10.3390/photonics12010058 - 10 Jan 2025
Viewed by 430
Abstract
We report on a mechanically Q-switched Tb:LiYF4 laser at 544 nm based on an optical chopper. With appropriate chopper settings, 521 μJ, 86 ns green pulses are generated at 1 kHz, corresponding to a peak power of 6.1 kW. To the best [...] Read more.
We report on a mechanically Q-switched Tb:LiYF4 laser at 544 nm based on an optical chopper. With appropriate chopper settings, 521 μJ, 86 ns green pulses are generated at 1 kHz, corresponding to a peak power of 6.1 kW. To the best of our knowledge, this is the highest peak power generated using Tb:LiYF4 lasers to date. Numerical simulations are carried out and agree well with the experimental results, which show that the pulse energy can be further scaled to the millijoule level and the peak power to over 10 kW. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

9 pages, 1922 KiB  
Article
Measurements of Group Delay and Chromatic Dispersion of Hollow-Core Fiber Using a Frequency Domain Method
by Xin Chen, Jason E. Hurley, John L. Nord, Ilia Nikulin, Paulo Dainese, Michael Sauer and Ming-Jun Li
Photonics 2025, 12(1), 47; https://doi.org/10.3390/photonics12010047 - 8 Jan 2025
Viewed by 502
Abstract
Although hollow-core fibers are intended to be single-mode, they can potentially carry slightly higher-order mode content depending on the specific fiber structure. The presence of one or more higher-order modes makes the measurement of group delay and chromatic dispersion difficult if one relies [...] Read more.
Although hollow-core fibers are intended to be single-mode, they can potentially carry slightly higher-order mode content depending on the specific fiber structure. The presence of one or more higher-order modes makes the measurement of group delay and chromatic dispersion difficult if one relies on an instrument that is designed to work with single-mode fiber, in particular, a commercial instrument. In this work, we present the measurements of hollow-core fibers using a frequency domain method by acquiring the complex transfer function over a range of modulation frequencies. The measurement technique is immune to the higher-order mode nature presented by some of the hollow-core fibers. We measured hollow-core fibers with a five-capillary structure and a six-capillary structure. We obtained the absolute group delay as well as the chromatic dispersion information. In particular, we were able to measure one hollow-core fiber with at least two modes. The measured chromatic dispersion values are consistent with the modeling and those reported in the literature. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

10 pages, 5839 KiB  
Communication
Broadband Thermo-Optic Photonic Switch for TE and TM Modes with Adiabatic Design
by Babak Hashemi, Maurizio Casalino, Teresa Crisci, Mohamed Mammeri and Francesco G. Della Corte
Photonics 2024, 11(12), 1177; https://doi.org/10.3390/photonics11121177 - 14 Dec 2024
Viewed by 644
Abstract
Optical power switches are essential components in fiber optic communication systems, requiring minimal losses, a broad operating wavelength range, and high tolerance to fabrication errors for optimal performance. Adiabatic optical power switches inherently meet these criteria and are well suited for manufacturing processes [...] Read more.
Optical power switches are essential components in fiber optic communication systems, requiring minimal losses, a broad operating wavelength range, and high tolerance to fabrication errors for optimal performance. Adiabatic optical power switches inherently meet these criteria and are well suited for manufacturing processes which support large-scale production at low costs. This paper presents the design and simulation of an adiabatic switch with a flat response in the whole 1525–1625 nm wavelength range (C band and L band) for both TE and TM polarizations. The switch is based on the thermo-optic effect induced by local variations in temperature. The impacts of the design parameters, such as the device length and dissipated heat, are analyzed. The simulation results indicate that the switch achieved high efficiency and low insertion losses, highlighting the potential of adiabatic switches for reliable and scalable integration into advanced optical circuits. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

15 pages, 9179 KiB  
Article
Underwater Dynamic Polarization-Difference Imaging with Greater Applicability
by Jinxin Deng, Jingping Zhu, Haoxiang Li, Yucai Kuang, Angze Li and Xiaofang Liu
Photonics 2024, 11(11), 1069; https://doi.org/10.3390/photonics11111069 - 14 Nov 2024
Viewed by 685
Abstract
Available polarization-difference imaging techniques face serious challenges in imaging speed and application range. To address these issues, this paper proposes an underwater dynamic polarization-difference imaging method with greater applicability. First, the intensity distribution of backscattered light is estimated via the Stokes vector. Afterward, [...] Read more.
Available polarization-difference imaging techniques face serious challenges in imaging speed and application range. To address these issues, this paper proposes an underwater dynamic polarization-difference imaging method with greater applicability. First, the intensity distribution of backscattered light is estimated via the Stokes vector. Afterward, the differential operation between the total intensity of light and the amplified estimation result of backscattered light makes clear imaging immediately accessible. Regardless of the movement states and polarization characteristics of the target, experimental results consistently demonstrate that the backscattered light can be eliminated to a great extent, and imaging quality and applicability are significantly enhanced. Meanwhile, the proposed method is immune to unexpected factors such as uneven illumination and has good stability. More importantly, there are also apparent advantages in terms of imaging time. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

9 pages, 8246 KiB  
Article
Passively Mode-Locked Erbium-Doped Fiber Laser and Application in Laser Thrombolysis
by Xiaoli Zhao, Linyu Cong, Congyu Zhang, Chenxi Zhang, Ijaz Ahmad and Bo Fu
Photonics 2024, 11(11), 1006; https://doi.org/10.3390/photonics11111006 - 25 Oct 2024
Cited by 1 | Viewed by 4066
Abstract
Fiber lasers have been widely used in surgery with the development of fiber photonics. Since the human body is prone to myocardial infarction caused by blood clots, laser thrombolysis was proposed as a safe and efficient treatment. Mode-locked fiber lasers have high peak [...] Read more.
Fiber lasers have been widely used in surgery with the development of fiber photonics. Since the human body is prone to myocardial infarction caused by blood clots, laser thrombolysis was proposed as a safe and efficient treatment. Mode-locked fiber lasers have high peak power and narrow pulse width. In order to observe the effect of laser thrombolysis with mode-locked fiber lasers, a 1.5 µm mode-locked fiber laser based on carbon nanotubes was built, showing a pulse width of 1.46 ps, a 3 dB bandwidth of 1.65 nm, and a repetition rate of 29.5 MHz. The output pulses were amplified by an erbium-doped fiber amplifier to the hundred-milliwatt level and were applied to the surface of a self-made thrombus. The influences of lasing power and time on the damage diameter of the thrombus surface were evaluated. A low threshold damage power of 45 mW was observed, which resulted from the high peak power of the mode-locked pulses. These results demonstrate that high ablation efficiency can be achieved by using mode-locked pulses with a narrow pulse width and high peak power. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

11 pages, 3729 KiB  
Article
One-Second Touchscreen Disinfection with Internal UVC-LEDs
by Kilian Noller, Ben Sicks and Martin Hessling
Photonics 2024, 11(11), 1001; https://doi.org/10.3390/photonics11111001 - 24 Oct 2024
Viewed by 822
Abstract
The transmission of pathogens via touchscreens is a concern both in medical environments regarding nosocomial infections and in public spaces. This study presents the development of a self-disinfecting touchscreen system and its implementation into an existing medical device. The disinfection was achieved by [...] Read more.
The transmission of pathogens via touchscreens is a concern both in medical environments regarding nosocomial infections and in public spaces. This study presents the development of a self-disinfecting touchscreen system and its implementation into an existing medical device. The disinfection was achieved by irradiating UVC light laterally into the quartz front glass of the touchscreen. The system also included a two-stage safety shutdown feature to protect users from UVC exposure. To detect the presence of the user’s hand, a proximity sensor behind the front glass of the touch screen was installed in combination with touch input registration. A rapid disinfection of staphylococci was achieved without compromising usability and user safety. The prototype demonstrated a bacterial reduction of 99.96% or 3.4 (±0.36) log levels in less than 1 s. The results suggest that the technology has the potential to make a significant contribution to reducing the transmission of infections in healthcare settings and beyond. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

9 pages, 1617 KiB  
Article
Nd:YVO4 Random Laser with Preferential Emission at 1340 nm over 1064 nm
by Jessica Dipold, Luciana R. P. Kassab and Niklaus U. Wetter
Photonics 2024, 11(10), 898; https://doi.org/10.3390/photonics11100898 - 25 Sep 2024
Viewed by 838
Abstract
Neodymium-doped yttrium vanadate random lasers have presented exceptional efficiency and output power at the 1064 nm emission wavelength. However, emission at 1340 nm has not yet been observed for these random lasers, even though regular bulk lasers have presented many impressive properties in [...] Read more.
Neodymium-doped yttrium vanadate random lasers have presented exceptional efficiency and output power at the 1064 nm emission wavelength. However, emission at 1340 nm has not yet been observed for these random lasers, even though regular bulk lasers have presented many impressive properties in this infrared region. Here, we present a dual-emission Nd3+:YVO4 pellet random laser, which emits at both 1064 nm and 1340 nm using a 585 nm pump wavelength, showing a new property corresponding to a much lower laser threshold at 1340 nm than with 1064 nm. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

14 pages, 309 KiB  
Article
Theoretical Investigation of the Influence of Correlated Electric Fields on Wavefront Shaping
by Niklas Fritzsche, Felix Ott, David Hevisov, Dominik Reitzle and Alwin Kienle
Photonics 2024, 11(9), 797; https://doi.org/10.3390/photonics11090797 - 27 Aug 2024
Viewed by 3448
Abstract
Wavefront shaping is a well-known method of restoring a focus deep within scattering media by manipulating the incident light. However, the achievable focus enhancement depends on and is limited by the optical and geometrical properties of the medium. These properties contribute to the [...] Read more.
Wavefront shaping is a well-known method of restoring a focus deep within scattering media by manipulating the incident light. However, the achievable focus enhancement depends on and is limited by the optical and geometrical properties of the medium. These properties contribute to the number of linearly independent transmission channels for light propagating through the turbid medium. Correlations occur when the number of incident waves coupled into the scattering medium exceeds this finite number of transmission channels. This paper investigates the wavefront shaping of such correlated electric fields. The influence of the observed correlations persists even though the average electric field distribution at positions in the focal plane follows a circular complex Gaussian. We show that correlations of the transmitted electric fields reduce the achievable intensity enhancement, even deep in the turbid medium. The investigations are carried out using a Monte Carlo algorithm. It is based on the speckle statistics of independent waves and introduces correlations of neighbouring electric fields via a Cholesky decomposition of the covariance matrix. Additional investigations include scenarios where the electric fields are not completely randomized, such as for ballistic or insufficiently scattered light. Significant contributions from such little-scattered light are observed to reduce the intensity enhancement further. Data from simulations solving Maxwell’s equations are compared with the results obtained from the Monte Carlo simulations for validation throughout this paper. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

14 pages, 863 KiB  
Article
Interferometrically Enhanced Intensity and Wavelength Modulation in Tunable Diode Laser Spectroscopy
by Sander Vervoort and Marcus Wolff
Photonics 2024, 11(8), 740; https://doi.org/10.3390/photonics11080740 - 8 Aug 2024
Viewed by 939
Abstract
Tunable diode laser spectroscopy (TDLS) is a measurement technique with high spectral resolution. It is based on tuning the emission wavelength of a semiconductor laser by altering its current and/or its temperature. However, adjusting the wavelength leads to a change in emission intensity. [...] Read more.
Tunable diode laser spectroscopy (TDLS) is a measurement technique with high spectral resolution. It is based on tuning the emission wavelength of a semiconductor laser by altering its current and/or its temperature. However, adjusting the wavelength leads to a change in emission intensity. For applications that rely on modulated radiation, the challenge is to isolate the true spectrum from the influence of extraneous instrumental contributions, particularly residual intensity and wavelength modulation. We present a novel approach combining TDLS with interferometric techniques, exemplified by the use of a Mach–Zehnder interferometer, to enable the separation of intensity and wavelength modulation. With interferometrically enhanced intensity modulation, we reduced the residual wavelength modulation by 83%, and with interferometrically enhanced wavelength modulation, we almost completely removed the residual derivative of the signal. A reduction in residual wavelength modulation enhances the spectral resolution of intensity-modulated measurements, whereas a reduction in residual intensity modulation improves the signal-to-noise ratio and the sensitivity of wavelength-modulated measurements. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

8 pages, 7013 KiB  
Article
Bessel-Beam Single-Photon High-Resolution Imaging in Time and Space
by Huiyu Qi, Zhaohui Li, Yurong Wang, Xiuliang Chen, Haifeng Pan, E Wu and Guang Wu
Photonics 2024, 11(8), 704; https://doi.org/10.3390/photonics11080704 - 29 Jul 2024
Viewed by 1080
Abstract
Synchronous laser beam scanning is a common technique used in single-photon imaging where the spatial resolution is primarily determined by the beam divergence angle. In this context, Bessel beams have been investigated as they can overcome the diffraction limit associated with traditional Gaussian [...] Read more.
Synchronous laser beam scanning is a common technique used in single-photon imaging where the spatial resolution is primarily determined by the beam divergence angle. In this context, Bessel beams have been investigated as they can overcome the diffraction limit associated with traditional Gaussian beams. Notably, the central spot of a Bessel beam retains its size almost unchanged within a non-diffractive distance. However, the presence of sidelobes in the Bessel beam can negatively impact spatial resolution. To address this challenge, we have developed a single-photon imaging system with high-depth resolution, which allows for the suppression of echo photons from the sidelobe light in the depth image, particularly when their flight time differs from that of the central spot. In our LiDAR setup, we successfully achieved high-resolution scanning imaging with a spatial resolution of approximately 0.5 mm while also demonstrating a high-depth resolution of 12 mm. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

15 pages, 23783 KiB  
Article
Evaluation of Fluorescence Contrast for the Differentiation of Ex Vivo Tissue Slides from Collagen-Related Degenerative Skin Diseases
by Tsanislava Genova, Petya Pavlova, Lidia Zaharieva, Petranka Troyanova and Ivan Terziev
Photonics 2024, 11(8), 687; https://doi.org/10.3390/photonics11080687 - 24 Jul 2024
Viewed by 701
Abstract
Histopathological analysis is one of the primary pillars in clinical diagnostics. The efforts to implement optical techniques aim at alleviating the burden of delivering timely and accurate diagnoses. We have explored the potential application of unstained tissue slides’ autofluorescence to differentiate collagen-related skin [...] Read more.
Histopathological analysis is one of the primary pillars in clinical diagnostics. The efforts to implement optical techniques aim at alleviating the burden of delivering timely and accurate diagnoses. We have explored the potential application of unstained tissue slides’ autofluorescence to differentiate collagen-related skin degenerative diseases, such as psoriasis, lupus erythematosus, scleroderma, and Syndrome of Raynaud. This exploration involved two techniques: fluorescence microscopy combined with colorimetric analysis and synchronous fluorescence spectroscopy. We addressed the main characteristic peculiarities of the examined samples and discussed the evaluation of potential classification parameters along with their diagnostic values. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

17 pages, 5806 KiB  
Article
Subset-Optimized Eight-Dimensional Trellis-Coded Modulation Scheme in High-Speed Optical Communication
by Jiexin Chen, Qi Zhang, Qihan Zhao, Xiangjun Xin, Ran Gao, Haipeng Yao, Feng Tian, Yongjun Wang, Qinghua Tian, Leijing Yang, Lan Rao, Fu Wang and Sitong Zhou
Photonics 2024, 11(7), 584; https://doi.org/10.3390/photonics11070584 - 21 Jun 2024
Viewed by 856
Abstract
In this paper, a subset-optimized eight-dimensional trellis-coded quadrature amplitude modulation (SO-8DTCM-16QAM) format for higher-order constellations in high-speed optical communications is proposed. This scheme increases the number of subsets of base 2D constellation divisions. On this basis, it is further optimized by using 2D [...] Read more.
In this paper, a subset-optimized eight-dimensional trellis-coded quadrature amplitude modulation (SO-8DTCM-16QAM) format for higher-order constellations in high-speed optical communications is proposed. This scheme increases the number of subsets of base 2D constellation divisions. On this basis, it is further optimized by using 2D subsets for Cartesian product combinations to obtain 4D subsets and eliminate the combinations with small Euclidean distances. Finally, the 4D subsets are utilized to construct interrelated 8D subsets for trellis coding modulation and signal transmission. The proposed scheme can effectively reduce the decoding complexity and outperforms the conventional scheme at a high signal-to-noise ratio (SNR). Simulation verification of the proposed scheme is carried out, and the results show that the SO-8DTCM-16QAM achieves signal-to-noise ratio (SNR) gains of 1.60 dB, 1.56 dB, 1.51 dB, and 1.33 dB, respectively, compared with the conventional 8D-16QAM signals when BTB and 5/20/30 km optical signal transmission are performed. The SO-8DTCM-16QAM also achieves an SNR gain of 1.86 dB, 1.75 dB, and 1.22 dB at a net transmission rate of 14/21/28 GBaud. In addition, the SO-8DTCM-16/32/64QAM achieves an SNR gain of 1.27 dB, 0.80 dB, and 1.24 dB, respectively, when compared with the unoptimized 8DTCM-16/32/64QAM. Meanwhile, the proposed eight-subset SO-8DTCM-QAM scheme reduces the complexity of the decoding computation in the subset selection part and the constellation point selection part by 93.75% and 50%, respectively, compared with the unoptimized eight-subset and four-subset 8DTCM-QAM schemes. It can be seen that the proposed scheme simultaneously optimizes the transmission performance and complexity of high-speed optical communication systems and has practical application value. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

17 pages, 4176 KiB  
Article
High-Dynamic-Range Absorption Spectroscopy by Generating a Wide Path-Length Distribution with Scatterers
by Ayaka Mori, Kyohei Yamashita and Eiji Tokunaga
Photonics 2024, 11(6), 556; https://doi.org/10.3390/photonics11060556 - 13 Jun 2024
Cited by 1 | Viewed by 1312 | Correction
Abstract
In absorption spectroscopy, it is challenging to detect absorption peaks with significant differences in their intensity in a single measurement. We enable high-dynamic-range measurements by dispersing scatterers within a sample to create a broad distribution of path lengths (PLs). The sample is placed [...] Read more.
In absorption spectroscopy, it is challenging to detect absorption peaks with significant differences in their intensity in a single measurement. We enable high-dynamic-range measurements by dispersing scatterers within a sample to create a broad distribution of path lengths (PLs). The sample is placed within an integrating sphere (IS) to capture all scattered light of various PLs. To address the complexities of PLs inside the IS and the sample, we performed a ray-tracing simulation using the Monte Carlo (MC) method, which estimates the measured absorbance A and PL distribution from the sample’s absorption coefficient µa and scattering properties at each wavelength λ. This method was validated using dye solutions with two absorption peaks whose intensity ratio is 95:1, employing polystyrene microspheres (PSs) as scatterers. The results confirmed that both peak shapes were delineated in a single measurement without flattening the high absorption peak. Although the measured peak shapes A(λ) did not align with the actual peak shapes µa(λ), MC enabled the reproduction of µa(λ) from A(λ). Furthermore, the analysis of the PL distribution by MC shows that adding scatterers broadens the distribution and shifts it toward shorter PLs as absorption increases, effectively adjusting it to µa. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

13 pages, 9090 KiB  
Article
Discriminating Glioblastoma from Normal Brain Tissue In Vivo Using Optical Coherence Tomography and Angiography: A Texture and Microvascular Analysis Approach
by Trung Nguyễn-Hoàng, Tai-Ang Wang, Chia-Heng Wu and Meng-Tsan Tsai
Photonics 2024, 11(5), 435; https://doi.org/10.3390/photonics11050435 - 8 May 2024
Viewed by 1317
Abstract
Brain tumors arise from abnormal cell growth in the brain. Glioblastoma, the most common and aggressive type, poses significant challenges for identification during surgery. The primary goal of this study is to identify and differentiate normal brain tissue from glioblastoma tissue using optical [...] Read more.
Brain tumors arise from abnormal cell growth in the brain. Glioblastoma, the most common and aggressive type, poses significant challenges for identification during surgery. The primary goal of this study is to identify and differentiate normal brain tissue from glioblastoma tissue using optical coherence tomography (OCT) and OCT angiography (OCTA). These techniques offer a non-invasive way to analyze the morphological and microvascular alternations associated with glioblastoma in an animal model. To monitor the changes in morphology and vascular distribution of brain tissue as glioblastoma tumors grow, time-series OCT and OCTA results were collected for comparison. Texture analysis of OCT images was proposed using the gray-level co-occurrence matrix (GLCM), from which homogeneity and variance were calculated as discriminative parameters. Additionally, OCTA was used to assess microvascular characteristics, including vessel diameter, density, and fractal dimension. The findings demonstrate that the proposed methods can effectively distinguish between normal and cancerous brain tissue in vivo. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

11 pages, 2059 KiB  
Article
The Diffraction Efficiency of Acrylate-Based Holographically Photopolymerized Gratings Enhanced by the Dark Reaction
by Ziyan Bai, Wenfeng Cai, Ming Cheng, Shun Lan, Delai Kong, Jian Shen, Mengjia Cen, Dan Luo, Yuan Chen and Yan Jun Liu
Photonics 2024, 11(4), 320; https://doi.org/10.3390/photonics11040320 - 29 Mar 2024
Viewed by 1176
Abstract
Photopolymers, especially acrylate-based ones with low cost and simple preparation, are promising materials for high-efficiency holographic gratings. However, it is still challenging to achieve high-performance gratings, due to the influences of many factors. In this work, we found that the dark reaction plays [...] Read more.
Photopolymers, especially acrylate-based ones with low cost and simple preparation, are promising materials for high-efficiency holographic gratings. However, it is still challenging to achieve high-performance gratings, due to the influences of many factors. In this work, we found that the dark reaction plays a critical role. The effect of the dark reaction on the optical properties of holographic gratings was investigated. Experimental results reveal that the diffraction efficiency of the gratings can be improved by a factor of three by involving the dark reaction process, and the highest diffraction efficiency for gratings can reach 97.8% after optimization. Therefore, the dark reaction can greatly enhance the optical performance of acrylate-based holographic gratings and other optical elements, thus holding great potential for many applications. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 15021 KiB  
Review
Research Progress on Applications of Metasurface-Based Optical Image Edge Detection Technology
by Yuying Jiang, Qingcheng Sun, Tauseef Abbas, Hongyi Ge, Guangming Li, Keke Jia, Yuwei Bu and Huifang Zheng
Photonics 2025, 12(1), 75; https://doi.org/10.3390/photonics12010075 - 16 Jan 2025
Viewed by 551
Abstract
With the rapid development of metasurface technology, metasurfaces have gained significant attention in optical edge detection. Owing to their precise control over the phase, amplitude, and polarization state of electromagnetic waves, metasurfaces offer a novel approach to edge detection that not only overcomes [...] Read more.
With the rapid development of metasurface technology, metasurfaces have gained significant attention in optical edge detection. Owing to their precise control over the phase, amplitude, and polarization state of electromagnetic waves, metasurfaces offer a novel approach to edge detection that not only overcomes the size limitations of traditional optical devices but also significantly enhances the flexibility and efficiency of image processing. This paper reviews recent research advances in metasurfaces for optical edge detection. Firstly, the principles of phase-controlled metasurfaces in edge detection are discussed, along with an analysis of their features in different applications. Then, methods for edge detection based on polarization and dispersion modulation of metasurfaces are elaborated, highlighting the potential of these technologies for efficient image processing. In addition, the progress in multifunctional metasurfaces is presented, offering new perspectives and application prospects for future optical edge detection, along with a discussion on the limitations of metasurface-based edge detection technologies and an outlook on their future development. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

37 pages, 22844 KiB  
Review
A Linear, Direct Far-Field Subwavelength Imaging Method: Microparticle-Assisted Nanoscopy
by Constantin Simovski
Photonics 2024, 11(11), 1005; https://doi.org/10.3390/photonics11111005 - 25 Oct 2024
Viewed by 883
Abstract
Microparticle-assisted nanoscopy (MAN) is a novel emerging technique of direct far-field deeply subwavelength imaging, which has been developed since 2011 as a set of experimental techniques. For a decade, the capability of a simple glass microsphere without fluorescent labels or plasmonic elements to [...] Read more.
Microparticle-assisted nanoscopy (MAN) is a novel emerging technique of direct far-field deeply subwavelength imaging, which has been developed since 2011 as a set of experimental techniques. For a decade, the capability of a simple glass microsphere without fluorescent labels or plasmonic elements to grant a direct, broadband, deeply subwavelength image of a nanostructured object was unexplained. Four years ago, the explanation of MAN via the suppression of diffraction was suggested by the author of the present overview. This explanation was confirmed by extensive full-wave simulations, which agreed with available experimental data and revealed new opportunities for MAN. Although the main goal of the present paper is to review recent works, state-of-the-art concepts in MAN are also reviewed. Moreover, so that the peculiarities of MAN are better outlined, its uniqueness compared to other practically important methods of far-field subwavelength imaging is also discussed. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

Back to TopTop