Highly Efficient Polarization-Insensitive Grating Couplers on Thin-Film Lithium Niobate with an Integrated Gold Layer
Abstract
:1. Introduction
2. Operating Principles of GCs and Device Structure
3. Results and Discussion
3.1. Optimization of Single Polarization GCs
3.2. Polarization-Independent Grating Coupler Design Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Zhang, M.; Yu, M.; Zhu, R.; Hu, H.; Loncar, M. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 2019, 10, 978. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Buscaino, B.; Wang, C.; Shams-Ansari, A.; Reimer, C.; Zhu, R.; Kahn, J.M.; Lončar, M. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 2019, 568, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Bo, F.; Cheng, Y.; Xu, J. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res. 2020, 8, 1910–1936. [Google Scholar] [CrossRef]
- Poberaj, G.; Hu, H.; Sohler, W.; Günter, P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 2012, 6, 488–503. [Google Scholar] [CrossRef]
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Jiang, W.; Patel, R.N.; Mayor, F.M.; McKenna, T.P.; Arrangoiz-Arriola, P.; Sarabalis, C.J.; Witmer, J.D.; Van Laer, R.; Safavi-Naeini, A.H. Lithium niobate piezo-optomechanical crystals. Optica 2019, 6, 845–853. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, B.; Hao, Z.; Bo, F.; Wang, X.; Gao, F.; Li, Y.; Zhang, G.; Xu, J. Thermo-optic effects in on-chip lithium niobate microdisk resonators. Opt. Express 2016, 24, 21869–21879. [Google Scholar] [CrossRef]
- Jiang, H.; Luo, R.; Liang, H.; Chen, X.; Chen, Y.; Lin, Q. Fast response of photorefraction in lithium niobate microresonators. Opt. Lett. 2017, 42, 3267–3270. [Google Scholar] [CrossRef]
- Agrell, E.; Karlsson, M.; Chraplyvy, A.R.; Richardson, D.J.; Krummrich, P.M.; Winzer, P.; Roberts, K.; Fischer, J.K.; Savory, S.J.; Eggleton, B.J.; et al. Roadmap of optical communications. J. Opt. 2016, 18, 063002. [Google Scholar] [CrossRef]
- Mahmoud, M.; Ghosh, S.; Piazza, G. Lithium Niobate on Insulator (LNOI) Grating Couplers. In CLEO: Science and Innovations; Optica Publishing Group: San Jose, CA, USA, 2015. [Google Scholar]
- Snyder, B.; O’Brien, P. Packaging process for grating-coupled silicon photonic waveguides using angle-polished fibers. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 954–959. [Google Scholar] [CrossRef]
- Baghsiahi, H.; Wang, K.; Kandulski, W.; Pitwon, R.C.A.; Selviah, D.R. Optical waveguide end facet roughness and optical coupling loss. J. Light. Technol. 2013, 31, 2659–2668. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, G.; Ruan, Z.; Gan, R.; Huang, P.; Zheng, Z.; Lu, L.; Li, J.; Guo, C.; Chen, K.; et al. Silicon–lithium niobate hybrid intensity and coherent modulators using a periodic capacitively loaded traveling-wave electrode. ACS Photonics 2022, 9, 2668–2675. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, Y.; Li, H.; Xu, M.; He, M.; Ke, W.; Tan, H.; Han, Y.; Li, Z.; Wang, D.; et al. High-performance polarization management devices based on thin-film lithium niobate. Light Sci. Appl. 2022, 11, 93. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-C.; Lu, Y.-C.; Liu, Y.-H.; Wang, L.; Na, N. Design of a Completely Vertical, Polarization-Independent Two-Dimensional Grating Coupler with High Coupling Efficiency. Sensors 2023, 23, 4662. [Google Scholar] [CrossRef] [PubMed]
- Taillaert, D.; Chong, H.; Borel, P.; Frandsen, L.; De La Rue, R.; Baets, R. A compact two-dimensional grating coupler used as a polarization splitter. IEEE Photonics Technol. Lett. 2003, 15, 1249–1251. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Hu, J.; Zhu, Y.; Cai, X.; Chen, P.; Liu, L. Two-dimensional grating coupler on silicon with a high coupling efficiency and a low polarization-dependent loss. Opt. Express 2020, 28, 4001–4009. [Google Scholar] [CrossRef]
- Cheng, Z.; Tsang, H.K. Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Opt. Lett. 2014, 39, 2206–2209. [Google Scholar] [CrossRef]
- Hao, T.; Sanchez-Postigo, A.; Cheben, P.; Ortega-Monux, A.; Ye, W.N. Dual-band polarization-independent subwavelength grating coupler for wavelength demultiplexing. IEEE Photonics Technol. Lett. 2020, 32, 1163–1166. [Google Scholar] [CrossRef]
- Xie, H.; Zheng, J.; Xu, P.; Yao, J.; Whitehead, J.; Majumdar, A. Ultra-compact subwavelength-grating-assisted polarization-independent directional coupler. IEEE Photonics Technol. Lett. 2019, 31, 1538–1541. [Google Scholar] [CrossRef]
- Wüster, J.; Bourgin, Y.; Feßer, P.; Behrens, A.; Sinzinger, S. Nano-imprinted subwavelength gratings as polarizing beamsplitters. J. Eur. Opt. Soc. Publ. 2021, 17, 4. [Google Scholar] [CrossRef]
- Ma, X.; Zhuang, C.; Zeng, R.; Coleman, J.J.; Zhou, W. Polarization-independent one-dimensional grating coupler design on hybrid silicon/LNOI platform. Opt. Express 2020, 28, 17113–17121. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Ruan, Z.; Chen, K.; Liu, L. One-dimensional grating coupler on lithium-niobate-on-insulator for high-efficiency and polarization-independent coupling. Opt. Lett. 2023, 48, 1434–1437. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Zhang, R.; Hao, Z.; Jia, D.; Gao, F.; Bo, F.; Zhang, G.; Xu, J. High-efficiency chirped grating couplers on lithium niobate on insulator. Opt. Lett. 2020, 45, 6651–6654. [Google Scholar] [CrossRef]
- Zhou, X.; Xue, Y.; Ye, F.; Feng, Z.; Li, Y.; Sun, X.; Lau, K.M.; Tsang, H.K. High coupling efficiency waveguide grating couplers on lithium niobate. Opt. Lett. 2023, 48, 3267–3270. [Google Scholar] [CrossRef]
- Han, X.; Jiang, Y.; Frigg, A.; Xiao, H.; Zhang, P.; Boes, A.; Nguyen, T.G.; Yang, J.; Ren, G.; Su, Y.; et al. Single-step etched grating couplers for silicon nitride loaded lithium niobate on insulator platform. APL Photonics 2021, 6, 086108. [Google Scholar] [CrossRef]
- Jian, J.; Xu, P.; Chen, H.; He, M.; Wu, Z.; Zhou, L.; Liu, L.; Yang, C.; Yu, S. High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate wave-guides. Opt. Express 2018, 26, 29651–29658. [Google Scholar] [CrossRef]
- Chrostowski, L.; Hochberg, M. Silicon Photonics Design; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Song, J.H.; Doany, F.E.; Medhin, A.K.; Dupuis, N.; Lee, B.G.; Libsch, F.R. Polarization-independent nonuniform grating couplers on silicon-on-insulator. Opt. Lett. 2015, 40, 3941–3944. [Google Scholar] [CrossRef]
- Statkiewicz-Barabach, G.; Tarnowski, K.; Kowal, D.; Mergo, P.; Urbanczyk, W. Fabrication of multiple Bragg gratings in microstructured polymer fibers using a phase mask with several diffraction orders. Opt. Express 2013, 21, 8521–8534. [Google Scholar] [CrossRef]
- Gedney, S.D. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics; Springer Nature: Dordrecht, The Netherlands, 2011; ISBN 9783031005589. [Google Scholar]
- Othonos, A. Fiber bragg gratings. Rev. Sci. Instrum. 1997, 68, 4309–4341. [Google Scholar] [CrossRef]
- Zaoui, W.S.; Rosa, M.F.; Vogel, W.; Berroth, M.; Butschke, J.; Letzkus, F. Cost-effective CMOS-compatible grating couplers with backside metal mirror and 69% coupling efficiency. Opt. Express 2012, 20, B238–B243. [Google Scholar] [CrossRef]
- Chen, X.; Tsang, H.K. Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides. Opt. Lett. 2011, 36, 796–798. [Google Scholar] [CrossRef] [PubMed]
- Benedikovic, D.; Cheben, P.; Schmid, J.H.; Xu, D.; Lapointe, J.; Wang, S.; Halir, R.; Ortega-Moñux, A.; Janz, S.; Dado, M. High-efficiency single etch step apodized surface grating coupler using subwavelength structure. Laser Photonics Rev. 2014, 8, L93–L97. [Google Scholar] [CrossRef]
- Reinisch, R.; Nevière, M.; Popov, E.; Akhouayri, H. Coupled-mode formalism and linear theory of diffraction for a simplified analysis of second harmonic generation at grating couplers. Opt. Commun. 1994, 112, 339–348. [Google Scholar] [CrossRef]
- Zeitner, U.D.; Oliva, M.; Fuchs, F.; Michaelis, D.; Benkenstein, T.; Harzendorf, T.; Kley, E.-B. High performance diffraction gratings made by e-beam lithography. Appl. Phys. A 2012, 109, 789–796. [Google Scholar] [CrossRef]
- Labbé, F.; Laila, A.M.; Ding, Y. A Polarization-Insensitive a-Si Grating Coupler on the Lithium Niobate-on-Insulator Platform. In CLEO: Science and Innovations; Optica Publishing Group: Charlotte, NC, USA, 2024. [Google Scholar]
Λ [nm] | Etch Depth [nm] | Fill Factor | θ deg | CE | |
---|---|---|---|---|---|
TE | 810 | 340 | 0.54 | 9 | 85.5% |
TM | 870 | 340 | 0.54 | 12 | 89% |
Ref. | LN Height [nm] | Metal Layer Thickness [nm] | Simulation | Experiment | PDL [dB] | Notes | ||
---|---|---|---|---|---|---|---|---|
CE | 3 dB Bandwidth [nm] TE/TM | CE | 3 dB Bandwidth [nm] TE/TM | |||||
This work | 600 | 100 | 85.5/89% | 70/120 | NA | NA | 0.14 | Hybrid GC Si on LNOI platform |
[22] | 600 | NA | 51/51% | 83/106 | NA | NA | 0.1 | Hybrid GC Si on LNOI platform |
[23] | 400 | 50 | −3.5/−3.7 dB | 40 | 3.57/4 dB | 40 | 0.69 | Uniform GC Au layer on x-cur LNOI |
[24] | 500 | 100 | 88.7/68% | 38 | 72/62% | 38 | NA | Chirp GC on z-cut LNOI with a Au layer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultan, A.; Khalil, M.; Mehravar, L.; Xu, C.-q. Highly Efficient Polarization-Insensitive Grating Couplers on Thin-Film Lithium Niobate with an Integrated Gold Layer. Photonics 2025, 12, 111. https://doi.org/10.3390/photonics12020111
Sultan A, Khalil M, Mehravar L, Xu C-q. Highly Efficient Polarization-Insensitive Grating Couplers on Thin-Film Lithium Niobate with an Integrated Gold Layer. Photonics. 2025; 12(2):111. https://doi.org/10.3390/photonics12020111
Chicago/Turabian StyleSultan, Alaa, Mostafa Khalil, Leila Mehravar, and Chang-qing Xu. 2025. "Highly Efficient Polarization-Insensitive Grating Couplers on Thin-Film Lithium Niobate with an Integrated Gold Layer" Photonics 12, no. 2: 111. https://doi.org/10.3390/photonics12020111
APA StyleSultan, A., Khalil, M., Mehravar, L., & Xu, C.-q. (2025). Highly Efficient Polarization-Insensitive Grating Couplers on Thin-Film Lithium Niobate with an Integrated Gold Layer. Photonics, 12(2), 111. https://doi.org/10.3390/photonics12020111