Localized Effects in Graphene Oxide Systems: A Pathway to Hyperbolic Metamaterials
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Micro-Raman Measurements
3.2. Morphological SEM Analysis
3.3. Variable Angle Spectroscopic Ellipsometry Measurements
3.4. Potential Application in Hyperbolic Metamaterials
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GO | Graphene oxide |
EMT | Effective medium theory |
RGO | Reduced graphene oxide |
VASE | Variable Angle Spectroscopic ellipsometry |
EMA | Effective Medium Approximation |
ENZP | Epsilon Near Zero and Pole |
References
- Wang, Z.; Cheng, F.; Winsor, T.; Liu, Y. Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications. Nanotechnology 2016, 27, 412001. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Cheng, F.; Xu, Y.; Wen, Q.; Liu, Y. Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model with Semi-Supervised Learning Strategy. Adv. Mater. 2019, 31, 1901111. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Fang, Y.; Meng, Y.; Hao, H.; Li, X.; Pu, M.; Ma, X.; Luo, X. Vortex-field enhancement through high-threshold geometric metasurface. Opto-Electron. Adv. 2024, 7, 240112. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, H.; Zhang, H.; Cheng, S.; Yi, Y.; Yi, Z.; Wang, J.; Zhang, J. Tunable ultra-sensitive four-band terahertz sensors based on Dirac semimetals. Photonics Nanostruct. Fundam. Appl. 2025, 63, 101347. [Google Scholar] [CrossRef]
- Chi, T.; Somers, P.; Wilcox, D.A.; Schuman, A.J.; Iyer, V.; Le, R.; Gengler, J.; Ferdinandus, M.; Liebig, C.; Pan, L.; et al. Tailored thioxanthone-based photoinitiators for two-photon-controllable polymerization and nanolithographic printing. J. Polym. Sci. Part B Polym. Phys. 2019, 57, 1462–1475. [Google Scholar] [CrossRef]
- Politano, G.G. Optimizing Graphene Oxide Film Quality: The Role of Solvent and Deposition Technique. C 2024, 10, 90. [Google Scholar] [CrossRef]
- Urade, A.R.; Lahiri, I.; Suresh, K.S. Graphene Properties, Synthesis and Applications: A Review. JOM 2023, 75, 614–630. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Alshammari, Y.; Majeed, S.A.; Al-Nasrallah, E. Chemical Vapour Deposition of Graphene—Synthesis, Characterisation, and Applications: A Review. Molecules 2020, 25, 3856. [Google Scholar] [CrossRef]
- Han, Y.-C.; Yin, S.-H.; Zheng, J.-R.; Hu, Y.-F.; Sun, L.; Zhang, L.; Tian, Z.-Q.; Yi, J. Epitaxial Growth of Graphene on SiC by Thermal Shock Annealing Within Seconds. Adv. Funct. Mater. 2024, 34, 2307298. [Google Scholar] [CrossRef]
- Lee, S.J.; Huh, H.K.; Kwon, D.H. Energy dissipation of graphene colloidal suspension droplets impacting on solid substrates. RSC Adv. 2014, 4, 7216–7224. [Google Scholar] [CrossRef]
- Politano, G.G. Optical Properties of Graphene Nanoplatelets on Amorphous Germanium Substrates. Molecules 2024, 29, 4089. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S. Graphene oxide: A mini-review on the versatility and challenges as a membrane material for solvent-based separation. Chem. Eng. J. Adv. 2022, 12, 100392. [Google Scholar] [CrossRef]
- Kurian, M. Recent progress in the chemical reduction of graphene oxide by green reductants–A Mini review. Carbon Trends 2021, 5, 100120. [Google Scholar] [CrossRef]
- Cao, K.; Tian, Z.; Zhang, X.; Wang, Y.; Zhu, Q. Green preparation of graphene oxide nanosheets as adsorbent. Sci. Rep. 2023, 13, 9314. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; De Adhikari, A.; Dey, A.; Lahiri, I. Green reduction of graphene oxide as a substitute of acidic reducing agents for supercapacitor applications. Mater. Sci. Eng. B 2023, 287, 116128. [Google Scholar] [CrossRef]
- Wu, T.; Liu, S.; Luo, Y.; Lu, W.; Wang, L.; Sun, X. Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: Using Ag nanoparticles as a plasmonic photocatalyst. Nanoscale 2011, 3, 2142–2144. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Q.; Gao, J.; Peng, M.; Bai, L.; Deng, J.; Xia, Y.; Ma, Y.; Zhong, J.; Sun, X. Large-scale synthesis of graphene by the reduction of graphene oxide at room temperature using metal nanoparticles as catalyst. Carbon N. Y. 2013, 52, 559–564. [Google Scholar] [CrossRef]
- Kodous, A.S.; Taha, E.O.; El-Maghraby, D.F.; Hassana, A.A.; Atta, M.M. Gamma radiation assisted green synthesis of hesperidin-reduced graphene oxide nanocomposite targeted JNK/SMAD4/MMP2 signaling pathway. Sci. Rep. 2024, 14, 11535. [Google Scholar] [CrossRef]
- Fan, Z.; Li, B.; Zhou, S.; Huang, G. Terahertz Meta-Mirror with Scalable Reflective Passband by Decoupling of Cascaded Metasurfaces. Photonics 2024, 11, 796. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, R.; Shi, B.; Li, X.; Gao, Y.; Gao, W.; Jia, Q.; Sun, F.; Cao, Y.; Ding, W. Ultra-Compact Reflective Waveguide Mode Converter Based on Slanted-Surface and Subwavelength Metamaterials. Photonics 2024, 11, 838. [Google Scholar] [CrossRef]
- Sasani Ghamsari, M. Development of Thin Film Fabrication Using Magnetron Sputtering. Metals 2023, 13, 963. [Google Scholar] [CrossRef]
- Shekhar, P.; Atkinson, J.; Jacob, Z. Hyperbolic metamaterials: Fundamentals and applications. Nano Converg. 2014, 1, 14. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Thuy An, N.; Kieu Thi Ta, H.; Van Hoang, D.; Phung, V.-D.; Hoa Thi Tran, N.; Thang Phan, B. Multilayer Graphene Oxide-Silver Nanoparticles for Stable, Highly Sensitive, and Reusable SERS Platforms. ChemNanoMat 2023, 9, e202200516. [Google Scholar] [CrossRef]
- Aunkor, M.T.H.; Mahbubul, I.M.; Saidur, R.; Metselaar, H.S.C. The green reduction of graphene oxide. RSC Adv. 2016, 6, 27807–27828. [Google Scholar] [CrossRef]
- Zacharias, P.; Kliewer, K.L. Dispersion relation for the 3.8 eV volume plasmon of silver. Solid State Commun. 1976, 18, 23–26. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Cai, W.; Shalaev, V.M. Optical Metamaterials; Springer: Berlin/Heidelberg, Germany, 2010; Volume 10. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Politano, G.G. Localized Effects in Graphene Oxide Systems: A Pathway to Hyperbolic Metamaterials. Photonics 2025, 12, 121. https://doi.org/10.3390/photonics12020121
Politano GG. Localized Effects in Graphene Oxide Systems: A Pathway to Hyperbolic Metamaterials. Photonics. 2025; 12(2):121. https://doi.org/10.3390/photonics12020121
Chicago/Turabian StylePolitano, Grazia Giuseppina. 2025. "Localized Effects in Graphene Oxide Systems: A Pathway to Hyperbolic Metamaterials" Photonics 12, no. 2: 121. https://doi.org/10.3390/photonics12020121
APA StylePolitano, G. G. (2025). Localized Effects in Graphene Oxide Systems: A Pathway to Hyperbolic Metamaterials. Photonics, 12(2), 121. https://doi.org/10.3390/photonics12020121