Method of Tissue Differentiation Based on Changes in Tissue Optical Properties Under Mechanical Stress Estimated with Optical Coherence Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Evaluation of Samples Hardness
2.3. OCT Setup
2.4. Experiment for Attenuation Coefficient Change Estimation Under Uniaxial Force
2.5. Auxiliary Silicon Layer Calibration
2.6. Attenuation Coefficient Estimation
2.7. Signal Processing in Silicone Experiments
2.8. Statistical Evaluations
2.9. Parameters Mapping
3. Results
3.1. Hardness of Samples
3.2. Experiments with the Molding Silicones
3.3. Auxiliary Silicon Layer Calibration Curve
3.4. Plastic Phantomes
3.5. Biological Samples
3.6. Map of Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, M.; Zvietcovich, F.; Larin, K. Introduction to Optical Coherence Elastography: Tutorial. J. Opt. Soc. Am. A 2022, 39, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Zaitsev, V.Y.; Matveyev, A.L.; Matveev, L.A.; Sovetsky, A.A.; Hepburn, M.S.; Mowla, A.; Kennedy, B.F. Strain and Elasticity Imaging in Compression Optical Coherence Elastography: The Two-Decade Perspective and Recent Advances. J. Biophotonics 2021, 14, e202000257. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J. Oct Elastography: Imaging Microscopic Deformation and Strain of Tissue. Opt. Express 1998, 3, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zaki, F.R.; Chandra, N.; Chester, S.A.; Liu, X. Nonlinear Characterization of Elasticity Using Quantitative Optical Coherence Elastography. Biomed. Opt. Express 2016, 7, 4702–4710. [Google Scholar] [CrossRef]
- Kennedy, K.M.; Es’haghian, S.; Chin, L.; McLaughlin, R.A.; Sampson, D.D.; Kennedy, B.F. Optical Palpation: Optical Coherence Tomography-Based Tactile Imaging Using a Compliant Sensor. Opt. Lett. 2014, 39, 3014–3017. [Google Scholar] [CrossRef]
- Sovetsky, A.A.; Matveyev, A.L.; Matveev, L.A.; Gubarkova, E.V.; Plekhanov, A.A.; Sirotkina, M.A.; Gladkova, N.D.; Zaitsev, V.Y. Full-Optical Method of Local Stress Standardization to Exclude Nonlinearity-Related Ambiguity of Elasticity Estimation in Compressional Optical Coherence Elastography. Laser Phys. Lett. 2020, 17, 065601. [Google Scholar] [CrossRef]
- Kennedy, B.F.; McLaughlin, R.A.; Kennedy, K.M.; Chin, L.; Curatolo, A.; Tien, A.; Latham, B.; Saunders, C.M.; Sampson, D.D. Optical Coherence Micro-Elastography: Mechanical-Contrast Imaging of Tissue Microstructure. Biomed. Opt. Express 2014, 5, 2113–2124. [Google Scholar] [CrossRef]
- Matveyev, A.L.; Matveev, L.A.; Sovetsky, A.A.; Gelikonov, G.V.; Moiseev, A.A.; Zaitsev, V.Y. Vector Method for Strain Estimation in Phase-Sensitive Optical Coherence Elastography. Laser Phys. Lett. 2018, 15, 065603. [Google Scholar] [CrossRef]
- Sticker, M.; Hitzenberger, C.K.; Leitgeb, R.; Fercher, A.F. Quantitative Differential Phase Measurement and Imaging in Transparent and Turbid Media by Optical Coherence Tomography. Opt. Lett. 2001, 26, 518–520. [Google Scholar] [CrossRef]
- Wang, R.; Kirkpatrick, S.; Hinds, M. Phase-Sensitive Optical Coherence Elastography for Mapping Tissue Microstrains in Real Time. Appl. Phys. Lett. 2007, 90, 164105. [Google Scholar] [CrossRef]
- Zaitsev, V.Y.; Matveyev, A.; Matveev, L.; Gelikonov, G.; Sovetsky, A.; Vitkin, A. Optimization of Phase-Variation Measurements in Low-Coherence Methods: Implications for OCE. In Biophotonics: Photonic Solutions for Better Health Care V; SPIE: Brussels, Belgium, 2016; Volume 9887, pp. 115–126. [Google Scholar] [CrossRef]
- Wang, S.; Larin, K.V.; Li, J.; Vantipalli, S.; Manapuram, R.K.; Aglyamov, S.; Emelianov, S.; Twa, M.D. A Focused Air-Pulse System for Optical-Coherence-Tomography-Based Measurements of Tissue Elasticity. Laser Phys. Lett. 2013, 10, 075605. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Qi, L.; Miao, Y.; Ma, T.; Dai, C.; Qu, Y.; He, Y.; Gao, Y.; Zhou, Q.; Chen, Z. 3d Mapping of Elastic Modulus Using Shear Wave Optical Micro-Elastography. Sci. Rep. 2016, 6, 35499. [Google Scholar] [CrossRef] [PubMed]
- Zvietcovich, F.; Nair, A.; Ambekar, Y.S.; Singh, M.; Aglyamov, S.R.; Twa, M.D.; Larin, K.V. Confocal Air-Coupled Ultrasonic Optical Coherence Elastography Probe for Quantitative Biomechanics. Opt. Lett. 2020, 45, 6567–6570. [Google Scholar] [CrossRef]
- Greenleaf, J.F.; Fatemi, M.; Insana, M. Selected Methods for Imaging Elastic Properties of Biological Tissues. Annu. Rev. Biomed. Eng. 2003, 5, 57–78. [Google Scholar] [CrossRef]
- Victorov, I.A. Rayleigh and Lamb Waves; Springer: New York, NY, USA, 1967. [Google Scholar]
- Wu, C.; Han, Z.; Wang, S.; Li, J.; Singh, M.; Liu, C.H.; Aglyamov, S.; Emelianov, S.; Manns, F.; Larin, K.V. Assessing Age-Related Changes in the Biomechanical Properties of Rabbit Lens Using a Coaligned Ultrasound and Optical Coherence Elastography System. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1292–1300. [Google Scholar] [CrossRef]
- Crecea, V.; Oldenburg, A.L.; Liang, X.; Ralston, T.S.; Boppart, S.A. Magnetomotive Nanoparticle Transducers for Optical Rheology of Viscoelastic Materials. Opt. Express 2009, 17, 23114–23122. [Google Scholar] [CrossRef]
- Singh, M.; Li, J.; Vantipalli, S.; Han, Z.; Larin, K.V.; Twa, M.D. Optical Coherence Elastography for Evaluating Customized Riboflavin/Uv-a Corneal Collagen Crosslinking. J. Biomed. Opt. 2017, 22, 91504. [Google Scholar] [CrossRef]
- Liang, X.; Oldenburg, A.L.; Crecea, V.; Chaney, E.J.; Boppart, S.A. Optical Micro-Scale Mapping of Dynamic Biomechanical Tissue Properties. Opt. Express 2008, 16, 11052–11065. [Google Scholar] [CrossRef]
- Almasian, M.; Wilk, L.S.; Bloemen, P.R.; van Leeuwen, T.G.; Laan, M.T.; Aalders, M.C.G. Pilot Feasibility Study of in Vivo Intraoperative Quantitative Optical Coherence Tomography of Human Brain Tissue During Glioma Resection. J. Biophotonics 2019, 12, e201900037. [Google Scholar] [CrossRef]
- Kut, C.; Chaichana, K.L.; Xi, J.; Raza, S.M.; Ye, X.; McVeigh, E.R.; Rodriguez, F.J.; Quinones-Hinojosa, A.; Li, X. Detection of Human Brain Cancer Infiltration Ex Vivo and in Vivo Using Quantitative Optical Coherence Tomography. Sci. Transl. Med. 2015, 7, 292ra100. [Google Scholar] [CrossRef]
- Gong, P.; McLaughlin, R.A.; Liew, Y.M.; Munro, P.R.; Wood, F.M.; Sampson, D.D. Assessment of Human Burn Scars with Optical Coherence Tomography by Imaging the Attenuation Coefficient of Tissue after Vascular Masking. J. Biomed. Opt. 2014, 19, 21111. [Google Scholar] [CrossRef] [PubMed]
- Foo, K.Y.; Chin, L.; Zilkens, R.; Lakhiani, D.D.; Fang, Q.; Sanderson, R.; Dessauvagie, B.F.; Latham, B.; McLaren, S.; Saunders, C.M.; et al. Three-Dimensional Mapping of the Attenuation Coefficient in Optical Coherence Tomography to Enhance Breast Tissue Microarchitecture Contrast. J. Biophotonics 2020, 13, e201960201. [Google Scholar] [CrossRef] [PubMed]
- Kirillin, M.Y.; Agrba, P.D.; Kamensky, V.A. In Vivo Study of the Effect of Mechanical Compression on Formation of Oct Images of Human Skin. J. Biophotonics 2010, 3, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Kirillin, M.; Agrba, P.; Kamensky, V. Mechanical Compression in Cross-Polarization Oct Imaging of Skin: In Vivo Study and Monte Carlo Simulation. Photonics Lasers Med. 2014, 3, 363–372. [Google Scholar] [CrossRef]
- Chan, E.K.; Sorg, B.; Protsenko, D.; O’Neil, M.; Motamedi, M.; Welch, A.J. Effects of Compression on Soft Tissue Optical Properties. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 943–950. [Google Scholar] [CrossRef]
- Shangguan, H.; Prahl, S.A.; Jacques, S.L.; Casperson, L.W.; Gregory, K.W. Pressure Effects on Soft Tissues Monitored by Changes in Tissue Optical Properties. In Proceedings of the International Biomedical Optics Symposium (BiOS ’98), San Jose, CA, USA, 27–29 January 1998; SPIE: Bellingham, DC, USA, 1998. [Google Scholar]
- Vogel, A.; Dlugos, C.; Nuffer, R.; Birngruber, R. Optical Properties of Human Sclera, and Their Consequences for Transscleral Laser Applications. Lasers Surg. Med. 1991, 11, 331–340. [Google Scholar] [CrossRef]
- Gurjarpadhye, A.A.; Vogt, W.C.; Liu, Y.; Rylander, C.G. Effect of Localized Mechanical Indentation on Skin Water Content Evaluated Using Oct. Int. J. Biomed. Imaging 2011, 2011, 817250. [Google Scholar] [CrossRef]
- Agrba, P.D.; Kirillin, M.Y.; Abelevich, A.I.; Zagaynova, E.V.; Kamensky, V.A. Compression as a Method for Increasing the Informativity of Optical Coherence Tomography of Biotissues. Opt. Spectrosc. 2009, 107, 853–858. [Google Scholar] [CrossRef]
- Moiseev, A.; Sherstnev, E.; Kiseleva, E.; Achkasova, K.; Potapov, A.; Yashin, K.; Sirotkina, M.; Gelikonov, G.; Matkivsky, V.; Shilyagin, P.; et al. Depth-Resolved Method for Attenuation Coefficient Calculation from Optical Coherence Tomography Data for Improved Biological Structure Visualization. J. Biophotonics 2023, 16, e202100392. [Google Scholar] [CrossRef]
- Gubarkova, E.; Moiseev, A.; Kiseleva, E.; Vorontsov, D.; Kuznetsov, S.; Vorontsov, A.; Gelikonov, G.; Sirotkina, M.; Gladkova, N. Tissue Optical Properties Estimation from Cross-Polarization Oct Data for Breast Cancer Margin Assessment. Laser Phys. Lett. 2020, 17, 075602. [Google Scholar] [CrossRef]
- Vermeer, K.; Mo, J.; Weda, J.; Lemij, H.; Boer, J. Depth-Resolved Model-Based Reconstruction of Attenuation Coefficients in Optical Coherence Tomography. Biomed. Opt. Express 2013, 5, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Pantojo, R.; Dominguez, C.; Cardoso, G. Optical Attenuation Coefficient of Skin under Low Compression. J. Opt. Soc. Am. A 2023, 40, 955–960. [Google Scholar] [CrossRef]
- Sovetsky, A.A.; Matveyev, A.L.; Matveev, L.A.; Gelikonov, G.V.; Zaitsev, V.Y. Mapping Large Strains in Phase-Sensitive Oct: Key Role of Supra-Pixel Displacement Tracking in Incremental Strain Evaluation. J. Biomed. Photonics Eng. 2022, 8, 030304. [Google Scholar] [CrossRef]
- Su, Y.; Yao, S.; Wei, C.; Wang, Y.; Wang, H.; Li, Z. Determination of the Pressure Coefficient of Optical Attenuation in Different Layers of in-Vivo Human Skins with Optical Coherence Tomography. IEEE Photonics J. 2016, 8, 1–10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherstnev, E.P.; Moiseev, A.A.; Sovetsky, A.A.; Shilyagin, P.A.; Ksenofontov, S.Y.; Gelikonov, G.V. Method of Tissue Differentiation Based on Changes in Tissue Optical Properties Under Mechanical Stress Estimated with Optical Coherence Tomography. Photonics 2025, 12, 122. https://doi.org/10.3390/photonics12020122
Sherstnev EP, Moiseev AA, Sovetsky AA, Shilyagin PA, Ksenofontov SY, Gelikonov GV. Method of Tissue Differentiation Based on Changes in Tissue Optical Properties Under Mechanical Stress Estimated with Optical Coherence Tomography. Photonics. 2025; 12(2):122. https://doi.org/10.3390/photonics12020122
Chicago/Turabian StyleSherstnev, Evgeny P., Alexander A. Moiseev, Aleksander A. Sovetsky, Pavel A. Shilyagin, Sergey Y. Ksenofontov, and Grigory V. Gelikonov. 2025. "Method of Tissue Differentiation Based on Changes in Tissue Optical Properties Under Mechanical Stress Estimated with Optical Coherence Tomography" Photonics 12, no. 2: 122. https://doi.org/10.3390/photonics12020122
APA StyleSherstnev, E. P., Moiseev, A. A., Sovetsky, A. A., Shilyagin, P. A., Ksenofontov, S. Y., & Gelikonov, G. V. (2025). Method of Tissue Differentiation Based on Changes in Tissue Optical Properties Under Mechanical Stress Estimated with Optical Coherence Tomography. Photonics, 12(2), 122. https://doi.org/10.3390/photonics12020122