Performance Analysis and Enhancement of Free Space Optical Links for Developing State-of-the-Art Smart City Framework
Abstract
:1. Introduction
1.1. Preliminaries
1.2. Literature Survey and Research Motivation
2. System Design
Atmospheric Turbulence and Gamma–Gamma Channel
3. Modulation Techniques
3.1. On–Off Keying
3.2. Binary Phase-Shift Keying
3.3. Differential Phase-Shift Keying
3.4. Gaussian Minimum Shift Keying
3.5. Quadrature Amplitude Modulation
3.6. Dual Header-Pulse Interval Modulation (DH-PIM)
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khalighi, M.A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Miglani, R.; Malhotra, J.S. An innovative approach for performance enhancement of 320 Gbps free space optical communication system over turbulent channel. Opt. Quant. Electron. 2019, 51, 289. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling with Matlab®; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Institution of Engineering and Technology. Principles and Applications of Free Space Optical Communications; Majumdar, A.K., Ghassemlooy, Z., Raj, A.A.B., Eds.; IET: Stevenage, UK, 2019; pp. 1–330. Available online: https://digital-library.theiet.org/content/books/te/pbte078e (accessed on 30 October 2020).
- Ramasarma, V. Free space optics: A viable last-mile solution. Bechtel Telecommun. Tech. J. 2002, 1, 22–30. [Google Scholar]
- Majumdar, A.K. Optical Wireless Communications for Broadband Global Internet Connectivity: Fundamentals and Potential Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 39–53. [Google Scholar]
- Miglani, R.; Malhotra, J.S.; Majumdar, A.K.; Tubbal, F.; Raad, R. Multi-hop relay based free space optical communication link for delivering medical services in remote areas. IEEE Photonics J. 2020, 12, 1–21. [Google Scholar] [CrossRef]
- Liu, Q.; Qiao, C.; Mitchell, G.; Stanton, S. Optical wireless communication networks for first-and last-mile broadband access. J. Opt. Netw. 2005, 4, 807–828. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Shahjalal, M.; Hasan, M.; Jang, Y.M. The Role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges. Appl. Sci. 2019, 9, 4367. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Nguyen-Huu, D.; Nguyen, T. On achievable rate region using location assisted coding (LAC) for FSO communication. In Proceedings of the IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–5. [Google Scholar]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Minoli, D.; Occhiogrosso, B. Practical Aspects for the Integration of 5G Networks and IoT Applications in Smart Cities Environments. Wirel. Commun. Mob. Comput. 2019, 6, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhong, W.D.; Fu, S.; Lin, C. Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique. IEEE Photonics J. 2009, 1, 277–285. [Google Scholar] [CrossRef]
- Das, S.; Chakraborty, M. ASK and PPM modulation based FSO system under varying weather conditions. In Proceedings of the 2016 IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York City, NY, USA, 20–22 October 2016; pp. 1–7. Available online: https://ieeexplore.ieee.org/document/7777825 (accessed on 30 October 2020).
- Dubey, D.; Prajapati, Y.K.; Tripathi, R. Error performance analysis of PPM-and FSK-based hybrid modulation scheme for FSO satellite downlink. Opt. Quant. Electron. 2020, 52, 286. [Google Scholar] [CrossRef]
- Sharma, K.; Grewal, S.K. Performance assessment of hybrid PPM–BPSK–SIM based FSO communication system using time and wavelength diversity under variant atmospheric turbulence. Opt. Quant. Electron. 2020, 52, 1–25. [Google Scholar] [CrossRef]
- Singh, M.; Malhotra, J. Performance investigation of high-speed FSO transmission system under the influence of different atmospheric conditions incorporating 3-D orthogonal modulation scheme. Opt. Quant. Electron. 2019, 51, 285. [Google Scholar] [CrossRef]
- Saber, M.J.; Keshavarz, A. On performance of adaptive subcarrier intensity modulation over generalized F–SO links. In Proceedings of the Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 8–10 May 2018; pp. 358–361. [Google Scholar]
- Badar, N.; Jha, R.K. Performance comparison of various modulation schemes over free space optical (FSO) link employing Gamma–Gamma fading model. Opt. Quant. Electron. 2017, 49, 192. [Google Scholar] [CrossRef]
- Singh, M.; Malhotra, J. Performance comparison of different modulation schemes in high-speed MDM based radio over FSO transmission link under the effect of atmospheric turbulence using aperture averaging. Wirel. Pers. Commun. 2020, 111, 825–842. [Google Scholar] [CrossRef]
- Singya, P.K.; Kumar, N.; Bhatia, V.; Alouini, M.S. On the Performance Analysis of Higher Order QAM Schemes over Mixed RF/FSO Systems. IEEE Trans. Veh. Technol. 2020, 69, 7366–7378. [Google Scholar] [CrossRef]
- Joseph, T.; Kaushal, H.; Jain, V.K.; Kar, S. Performance analysis of OOK modulation scheme with spatial diversity in atmospheric turbulence. In Proceedings of the 2014 23rd Wireless and Optical Communication Conference (WOCC), Newark, NJ, USA, 9–10 May 2014; pp. 1–3. [Google Scholar]
- Dat, P.T.; Kanno, A.; Inagaki, K.; Umezawa, T.; Yamamoto, N.; Kawanishi, T. Hybrid optical wireless-mmWave: Ultra high-speed indoor communications for beyond 5G. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 1003–1004. [Google Scholar]
- Nguyen, D.-N.; Bohata, J.; Spacil, J.; Dousek, D.; Komanec, M.; Zvanovec, S.; Ghassemlooy, Z.; Ortega, B. M-QAM transmission over hybrid microwave photonic links at the K-band. Opt. Express 2019, 27, 33745–33756. [Google Scholar] [CrossRef]
- Andrews, L.C. Field Guide to Atmospheric Optics, 2nd ed.; SPIE Press: Bellingham, WA, USA, 2001; p. 99. [Google Scholar]
- Al-Gailani, S.A.; Mohammad, A.B.; Shaddad, R.Q.; Sheikh, U.U.; Elmagzoub, M.A. Hybrid WDM/multibeam free-space optics for multigigabit access network. Photon. Netw. Commun. 2015, 29, 138–145. [Google Scholar] [CrossRef]
- Nor, N.A.M.; Ghassemlooy, Z.; Zvanovec, S.; Khalighi, M.; Bhatnagar, M.R. Comparison of optical and electrical based amplify-and-forward relay-assisted FSO links over gamma-gamma channels. In Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Prague, Czech Republic, 20–22 July 2016; pp. 1–5. [Google Scholar]
- Pham, T.V.; Pham, T.A. Performance analysis of amplify-decode-and-forward multihop binary phase-shift keying/free-space optical systems using avalanche photodiode receivers over atmospheric turbulence channels. IET Commun. 2014, 8, 1518–1526. [Google Scholar] [CrossRef] [Green Version]
- Libich, J.; Komanec, M.; Zvanovec, S.; Pesek, P.; Popoola, W.O.; Ghassemlooy, Z. Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes. Opt. Lett. 2015, 40, 391–394. [Google Scholar] [CrossRef]
- Aghajanzadeh, S.M.; Uysal, M. Multi-hop coherent free-space optical communications over atmospheric turbulence channels. IEEE Trans. Commun. 2011, 59, 1657–1663. [Google Scholar] [CrossRef]
- Prabu, K. Analysis of FSO systems with SISO and MIMO techniques. Wirel. Pers. Commun. 2019, 105, 1133–1141. [Google Scholar] [CrossRef]
- Trinh, P.V.; Dang, N.T.; Pham, A.T. Optical amplify-and-forward multihop WDM/FSO for all-optical access networks. In Proceedings of the 2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), Manchester, UK, 23–25 July 2014; pp. 1106–1111. [Google Scholar]
- Gao, Z.; Liu, H.; Ma, X.; Lu, W. Performance of multi-hop parallel free-space optical communication over gamma–gamma fading channel with pointing errors. Appl. Opt. 2016, 55, 9178–9184. [Google Scholar] [CrossRef] [PubMed]
- Dabiri, M.T.; Sadough, S.M.S. Performance analysis of all-optical amplify and forward relaying over log-normal FSO channels. J. Opt. Commun. Netw. 2018, 10, 79–89. [Google Scholar] [CrossRef]
- Alnajjar, S.H.; Noori, A.A.; Moosa, A.A. Enhancement of FSO communications links under complex environment. Photonic Sens. 2017, 7, 113–122. [Google Scholar] [CrossRef] [Green Version]
Parameter | Range/Value |
---|---|
Link length [26,27] | 1.25 km |
Refractive index structure () [28,29,30] | 10−12 m−2/3 (strong turbulence) |
10−15 m−2/3 (moderate turbulence) | |
10−17 m−2/3 (weak turbulence) | |
Spatial diversity order [26,31] | |
Photodetector responsivity [27,32] | 1 A/W |
Operating wavelength [27,30,32,33] | 1550 nm |
data rate (rb) [3] | 155 Mbps |
Transmitter aperture [27,34] | 20 cm |
Receiver aperture [34,35] | 20 cm |
Modulation Technique | Weak Turbulence | Moderate Turbulence | Strong Turbulence |
---|---|---|---|
OOK | 19.9 | 33 | 45.2 |
DPSK | 10 | 15.3 | 21.5 |
BPSK | 8 | 14.3 | 19.5 |
256 QAM | 8.4 | 15.1 | 21 |
64 QAM | 9.4 | 17.3 | 23.5 |
16 QAM | 11 | 20.7 | 28 |
GMSK | 9.2 | 16.8 | 23 |
Modulation Technique | Weak Turbulence Regime | Moderate Turbulence Regime | Strong Turbulence Regime | ||||||
---|---|---|---|---|---|---|---|---|---|
Without SDRT (dB) | With SDRT (dB) | SNR Gain (%) | Without SDRT (dB) | With SDRT (dB) | SNR Gain (%) | Without SDRT (dB) | With SDRT (dB) | SNR Gain (%) | |
OOK | 19.9 | 8.8 | 55.7 | 33 | 26 | 21.2 | 45.2 | 37.2 | 17.69 |
DPSK | 10 | 5.25 | 47.5 | 15.3 | 13 | 15 | 21.5 | 18 | 16.27 |
BPSK | 8 | 5.1 | 36.25 | 14.3 | 12.5 | 12.5 | 19.5 | 17 | 12.82 |
256 QAM | 8.4 | 5 | 40.47 | 15.1 | 13.2 | 12.5 | 21 | 18.2 | 13.33 |
64 QAM | 9.4 | 5.6 | 40.42 | 17.3 | 15 | 13.2 | 23.5 | 20.2 | 14.04 |
16 QAM | 11 | 6.5 | 40.9 | 20.7 | 18 | 13 | 28 | 24.8 | 11.42 |
GMSK | 9.2 | 5.7 | 38 | 16.8 | 14.6 | 13 | 23 | 20 | 13.04 |
Modulation Technique | Weak Regime | Moderate Regime | Strong Regime |
---|---|---|---|
DH-PIM without SDRT | 79 | Above 100 | Above 100 |
DH-PIM with SDRT | 32 | 83 | 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chauhan, S.; Miglani, R.; Kansal, L.; Gaba, G.S.; Masud, M. Performance Analysis and Enhancement of Free Space Optical Links for Developing State-of-the-Art Smart City Framework. Photonics 2020, 7, 132. https://doi.org/10.3390/photonics7040132
Chauhan S, Miglani R, Kansal L, Gaba GS, Masud M. Performance Analysis and Enhancement of Free Space Optical Links for Developing State-of-the-Art Smart City Framework. Photonics. 2020; 7(4):132. https://doi.org/10.3390/photonics7040132
Chicago/Turabian StyleChauhan, Sonali, Rajan Miglani, Lavish Kansal, Gurjot Singh Gaba, and Mehedi Masud. 2020. "Performance Analysis and Enhancement of Free Space Optical Links for Developing State-of-the-Art Smart City Framework" Photonics 7, no. 4: 132. https://doi.org/10.3390/photonics7040132
APA StyleChauhan, S., Miglani, R., Kansal, L., Gaba, G. S., & Masud, M. (2020). Performance Analysis and Enhancement of Free Space Optical Links for Developing State-of-the-Art Smart City Framework. Photonics, 7(4), 132. https://doi.org/10.3390/photonics7040132