5G-Enabled Tactile Internet Resource Provision via Software-Defined Optical Access Networks (SDOANs)
Abstract
:1. Introduction
- We illustrate and highlight 5G-URLC based on the efficient low latency (<1 ms) and highly reliable (99.999 percent) telesurgery architecture is proposed.
- A new Software-Defined (SD) enabled cloudlet-based TI-SDOAN architecture and operational method for TWDM-PONs in which SD solutions manage the dynamic resource allocation of various resources in an SD programmed process.
- To enable streamlined management of composite PON systems, the proposed SDOAN is enhanced to the OLT and ONU-AP architectures. The novelty of our work is compared to similar previous studies [26,27]. This paper focusing on the SDN-based traditional EPON architecture and proposed the dynamic bandwidth allocation using the IPACT DBA. The IPACT DBA has not supported the Tactile internet and our work is supported TI traffic and different traffic distribution and the SDN dynamically controls the active wavelengths. Further, our proposed work is based on multi scheduling-PON (MSD-EPON) mechanism in IEEE 802.3ca based-EPON.
- To reduce the end-to-end delay and improve the QoS requirements, an adaptive TWDM-PON SD-TI dynamic wavelength bandwidth allocation (DWBA), and time management system (SD-DWTS) are presented.
- Finally, the difference between non-SD and our proposed SD-enabled TI-SDOAN architecture and mechanism are shown in Table 1.
2. Related Work
3. 5G-Enabled Low Latency TI-Telesurgery Architecture
3.1. Master Domain
3.2. Network Domain
3.2.1. Tactile Internet Intelligent Engine
3.2.2. Wired and Wireless Connectivity
3.2.3. Cloudlet
3.2.4. SDN and Network Coding (NC)
3.2.5. Serving Gateway (SGW)
3.2.6. Packet Gateway (PGW)
3.3. Slave Domain
3.3.1. Robotic Arms
3.3.2. Haptic Devices
3.3.3. Full High Definition Camera
4. Proposed TI-SDOAN System Architecture and Mechanism
4.1. SD-OLT
4.2. SD-ONU-AP
4.3. SD Controller and Its Operations
- By activating the Line-OLT in the SD-OLT, the SD controller begins the registration process with the lowest available transmission link rate.
- In the Line-OLT, the OAM process begins the discovery method and registers the discovered ONU-AP with the SD controller.
- The newly registered SD-ONU-AP is added to the database of the SD controller.
- Based on the initial REPORT messages from the SD-ONU-AP, the DWBA of the SD-OLT assigns the SD-ONU-AP as an initial timeslot.
- To compensate for changes in the traffic, the SD controller monitors the traffic load of the active Line-OLT and as well as adjusts the transmission link rate or activates/deactivates new Line-OLTs.
- The SD controller coordinates SD-ONU-APs to use the new changes if there are changes in the transfer rate or if the SD-ONU-APs need to be replaced.
4.3.1. The Wavelength and Transmission Link-Rate (TLR) Management based on SDN
4.3.2. Time Management Mechanism Based on SDN
4.3.3. SD Overall Orchestration Management
4.4. TI-DWBA
Algorithm 1 Pseudocode for TI-DWBA scheme. |
i = number of ONUs (64) |
wTI = wavelength for TI transmission |
RTTi = round-trip time of the i ONU |
Tavailable = scheduled time for upstream transmission |
Tguard = guard band interval |
maxLength = maximum transmission timeslot of ONUi |
Report.j.length = j packets (bits) at the ONUi buffer |
Bleft = remaining bandwidth |
For every wavelength, w, where w ∈{1,…,4} do { |
For every received Report.j.length of ONUk, where k ∈ {i/w}, j ∈ {TI, EF, AF, BE} do { |
startTime = Tavailable + Tguard |
if j = TI then { |
if Report.j.length > maxLength then { |
Report.j.length = maxLength |
GRANT = {startTime-RTTi, maxLength, wTI} |
Send GRANT message |
} else { |
GRANT = {startTime-RTTi, Report.j.length, wTI} |
Send GRANT message |
} |
} else { |
if Report.j.length > maxLength then { |
Report.j.length = maxLength |
GRANT = {startTime-RTTi, maxLength, w} |
Send GRANT message |
}else { |
GRANT = {startTime-RTTi, Report.j.length, w} |
Send GRANT message |
} |
} |
Bleft = maxLength–Report.j.length |
maxLength = Bleft |
Tavalaible = startTime + Report.j.length |
} |
} |
4.5. TI-SDOAN QoS Support
5. Performance Evaluation
5.1. Mean Packet Delay
5.2. TI Jitter
5.3. System Throughput
5.4. Packet Loss
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbrevitions
Notations | Description |
IIoT | Industrail Internet of Things |
5G | Fifth Generation Network |
TI | Tactile Internet |
SDN | Software Defined Network |
OAN | Optical Access Network |
SDOAN | Software Defined Optical Access Network |
DBA | Dynamic Bandwidth Allocation |
DWBA | Dynamic Wavelength and Bandwidth Allocation |
QoS | Quality of Service |
PON | Passive Optical Network |
NG-PON2 | Next Generation Passive Optical Networks 2 |
TWDM | Time and Wavelength Division Multiplexing |
ODN | Optical Distribution Network |
NBAPI | NorthBound Application Programming Interface |
SBAPI | SouthBound Application Programming Interface |
SD-OLT | Software-Defined-Optical Line Terminal |
SD-ONU-AP | Softwate Defined-Optical Network Unit-Access Point |
L-ONU | Line-Optical Network Uunit |
VR/AR | Virutual/Augumented Reality |
TLR | Transmission Link-Rate |
EF | Expedited Forwarding (Voice) |
AF | Assured Forwarding (Video) |
BE | Best Effort |
CoS | Class of Service |
ToS | Type of Service |
QoE | Quality of experience |
CBR | Constant Bit Rate |
M2M | Machie-To-Machine Communication |
H2M | Human-To-Machine Communication |
References
- Fettweis, G.P. The Tactile Internet: Applications and Challenges. IEEE Veh. Technol. Mag. 2014, 9, 64–70. [Google Scholar] [CrossRef]
- Holland, O.; Steinbach, E.; Prasad, R.V.; Liu, Q.; Dawy, V. The IEEE 1918.1 Tactile Internet’ standards working group and its standards. Proc. IEEE 2019, 107, 256–279. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, E.; Hwang, I.-S.; Liem, A.T. Resource Allocation for Tactile Internet via Software-Defined FiWi Access Network. In Proceedings of the 2020 International Computer Symposium (ICS), Tainan, Taiwan, 17–19 December 2020; pp. 283–287. [Google Scholar]
- Simsek, M.; Aijaz, A.; Dohler, M.; Sachs, J.; Fettweis, G. 5G-Enabled Tactile Internet. IEEE J. Sel. Areas Commun. 2016, 34, 460–473. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Duan, Q.; Zhou, L. A QoE-driven tactile internet architecture for smart city. IEEE Netw. 2020, 334, 130–136. [Google Scholar] [CrossRef]
- Sachs, J.; Andersson, L.A.A.; Araujo, J.; Curescu, C.; Lundsjo, J.; Rune, G.; Steinbach, E.; Wikstrom, G. Adaptive 5G Low-Latency Communication for Tactile InternEt Services. Proc. IEEE 2018, 107, 325–349. [Google Scholar] [CrossRef]
- Maier, M.; Chowdhury, M.; Rimal, B.P.; Van, D.P. The tactile internet: Vision, recent progress, and open challenges. IEEE Commun. Mag. 2016, 54, 138–145. [Google Scholar] [CrossRef]
- Antonkoglou, A.; Xu, X.; Steinbach, E.; Mahmoodi, T.; Dohler, M. Towards haptic communication over the 5G tactile internet. IEEE Commun. Surv. Tutor. 2018, 20, 3034–3059. [Google Scholar] [CrossRef] [Green Version]
- Wong, E.; Dias, M.P.I.; Ruan, L. Predictive Resource Allocation for Tactile Internet Capable Passive Optical LANs. J. Light. Technol. 2017, 35, 2629–2641. [Google Scholar] [CrossRef]
- Steinbach, E.; Hirche, S.; Ernst, M.; Brandi, F.; Chaudhari, R.; Kammerl, J.; Vittorias, I. Haptic Communications. Proc. IEEE 2012, 100, 937–956. [Google Scholar] [CrossRef]
- Steinbach, E.; Strese, M.; Eid, M.; Liu, X.; Bhardwaj, A.; Liu, Q.; Al-Ja’Afreh, M.; Mahmoodi, T.; Hassen, R.; El Saddik, A.; et al. Haptic Codecs for the Tactile Internet. Proc. IEEE 2018, 107, 447–470. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, Y.; Han, P.; Shao, Z.; Li, C. Virtual Network Embedding in Fiber-Wireless Access Networks for Resource-Efficient IoT Service Provisioning. IEEE Access 2019, 7, 65506–65517. [Google Scholar] [CrossRef]
- IEEE P802.3av 10G-Ethernet Passive Optical Network Task Force. Available online: http://www.ieee802.org/3/av/index.html (accessed on 10 February 2021).
- Nesset, D. NG-PON2 Technology and Standards. J. Light. Technol. 2015, 33, 1136–1143. [Google Scholar] [CrossRef]
- Kim, K.; Doo, K.H.; Lee, H.H.; Kim, S.H.; Park, H.; Yeol oh, J.; Chung, H.S. High speed and low latency passive optical net-work for 5G wireless systems. J. Light. Technol. 2019, 37, 2873–2882. [Google Scholar] [CrossRef]
- 40-Gigabit-Capable Passive Optical Networks 2 (NG-PON2), Document ITU-T G.989 Series Recommendations. October 2015. Available online: http://www.itu.int/rec/T-REC-G.989.1-201303-I/en. (accessed on 10 February 2021).
- IEEE P802.3ca 100G-EPON Task Force. Available online: http://www.ieee802.org/3/ca/ (accessed on 10 February 2021).
- Nakayama, Y.; Uzawa, H.; Hisano, D.; Ujikawa, H.; Nakamura, H.; Terada, J.; Otaka, A. Efficient DWBA Algorithm for TWDM-PON with Mobile Fronthaul in 5G Networks. IEEE Glob. Commun. Conf. 2017, 1–6. [Google Scholar] [CrossRef]
- Valkanis, A.; Nicopolitidis, P.; Papadimitriou, G.; Kallergis, D.; Douligeris, C.; Bamidis, P.D. Efficient Resource Allocation in Tactile-Capable Ethernet Passive Optical Healthcare LANs. IEEE Access 2020, 8, 52981–52995. [Google Scholar] [CrossRef]
- Orphanoudakis, T.; Kosmatos, E.; Angelopoulos, J.; Stavdas, A. Exploiting PONs for mobile backhaul. IEEE Commun. Mag. 2013, 51, S27–S34. [Google Scholar] [CrossRef]
- Maier, M.; Ebrahimzada, A. Towards Immersive tactile internet experiences: Low-latency FiWi enhanced mobile networks with edge intelligence. J. Opt. Commun. Netw. 2019, 11, B10–B25. [Google Scholar] [CrossRef]
- Fiorani, M.; Skubic, B.; Marensson, J.; Lalcarenghi, L.; Castoldi, P.; Wosinka, L.; Monti, P. On the design of 5G transport networks. Photonic Netw. Commun. 2015, 30, 403–415. [Google Scholar] [CrossRef]
- Cvijietic, N. SDN for optical access networks. Adv. Photonic Commun. OSA Paper PM3C.4 2014, 1–2. [Google Scholar] [CrossRef]
- Kreutz, D.; Ramos, F.M.V.; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-Defined Networking: A Comprehensive Survey. Proc. IEEE 2015, 103, 14–76. [Google Scholar] [CrossRef] [Green Version]
- Huwaei’s Smart Hospital Solutions. Available online: https://rendta.com/wp-content/uploads/2015/09/Huawei-Smart-Hospital-Solutions-Brochure-HD.pdf (accessed on 20 February 2021).
- Li, C.; Guo, W.; Wang, W.; Hu, W.; Xia, M. Programmable bandwidth management in software-defined EPON architecture. Opt. Commun. 2016, 370, 43–48. [Google Scholar] [CrossRef]
- Hwang, I.S.; Tesi, C.; Pakphan, A.F.; Ab-Rahman, M.S.; Liem, A.T.; Rianto, A. Software-defined time-shifted IPTV architec-ture for locality-awareness TWDM-PON. Optics 2020, 207, 1–9. [Google Scholar]
- Kondepu, K.; Valcarenghi, L.; Van, D.P.; Castoldi, P. Trading Energy Savings and Network Performance in Reconfigurable TWDM-PONs. J. Opt. Commun. Netw. 2015, 7, 470–479. [Google Scholar] [CrossRef]
- Hwang, I.S.; Yeh, T.J.; Hwang, B.J.; Lee, J.Y. Synchronous interleaved dynamic bandwidth assignment for quality of service over GPON-LTE converged network. J. Int. Technol. 2015, 16, 1259–1270. [Google Scholar]
- Mohammadani, K.; Butt, R.A.; Memon, K.A.; Hassan, F.; Majeed, A.; Kumar, R. Highest Cost First-Based QoS Mapping Scheme for Fiber Wireless Architecture. Photonics 2020, 7, 114. [Google Scholar] [CrossRef]
- Muciaccia, T.; Gargano, F.; Passaro, V.M.N. Passive Optical Access Networks: State of the Art and Future Evolution. Photonics 2014, 1, 323–346. [Google Scholar] [CrossRef]
- Thyagaturu, A.S.; Mercian, A.; McGarry, M.P.; Reisslein, M.; Kellerer, W. Software Defined Optical Networks (SDONs): A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2016, 18, 2738–2786. [Google Scholar] [CrossRef] [Green Version]
- Marotta, A.; Cassioli, D.; Kondepu, K.; Antonelli, C.; Valcarenghi, L. Exploiting flexible functional split in converged software defined access networks. J. Opt. Commun. Netw. 2019, 11, 536–546. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zhang, J.; Zhao, Y.; Han, J.; Lin, Y.; Lee, Y. SUdoi:Software defined networking for ubiquitous data center optical interconnection. IEEE Commun. Mag. 2016, 54, 86–95. [Google Scholar] [CrossRef]
- Sedaghat, S.; Jahangir, A.H. RT-TelSurg: Real Time Telesurgery Using SDN, Fog, and Cloud as Infrastructures. IEEE Access 2021, 9, 52238–52251. [Google Scholar] [CrossRef]
- Gupta, R.; Tanwar, S.; Tyagi, S.; Kumar, N. Tactile-Internet-Based Telesurgery System for Healthcare 4.0: An Architecture, Research Challenges, and Future Directions. IEEE Netw. 2019, 33, 22–29. [Google Scholar] [CrossRef]
- Miao, Y.; Jiang, Y.; Peng, L.; Hossain, M.S.; Muhammad, G. Telesurgery Robot Based on 5G Tactile Internet. Mob. Netw. Appl. 2018, 23, 1645–1654. [Google Scholar] [CrossRef]
- Mukherjee, M.; Guo, M.; Lloret, J.; Zhang, Q. Leveraging Intelligent Computation Offloading with Fog/Edge Computing for Tactile Internet: Advantages and Limitations. IEEE Netw. 2020, 34, 322–329. [Google Scholar] [CrossRef]
- Madhani, A.; Niemeyer, G.; Salisbury, J. The Black Falcon: A teleoperated surgical instrument for minimally invasive surgery. In Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory Practice and Applications (Cat. No.98CH36190), Victoria, BC, Canada, 17 October 1998; pp. 936–944. [Google Scholar]
- Hassan, T.; Hameed, A.; Nisar, S.; Kamal, N.; Hasan, O. Al-Zahrawi: A Telesurgical Robotic System for Minimal Invasive Surgery. IEEE Syst. J. 2014, 10, 1035–1045. [Google Scholar] [CrossRef]
- Subramaniam, S.; Kondepu, K.; Marotta, A. Cross-Layer Design. In Springer Handbook of Optical Networks; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Leveque, L.; Zhang, W.; Cavaro-Menard, C.; Le Callet, P.; Liu, H. Study of Video Quality Assessment for Telesurgery. IEEE Access 2017, 5, 9990–9999. [Google Scholar] [CrossRef]
- Quek, Z.F.; Provancher, W.R.; Okamura, A.M. Eavaluation of skin deformation tactile feedback for teleoperated surgical tasks. IEEE. Trans. Hap. 2019, 12, 102–113. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Zhao, G. Towards 5G enabled tactile robotic telesurgery. arXiv 2018, arXiv:1803.03586. [Google Scholar]
- Arslan, M.Y.; Sundaresan, K.; Rangarajan, S. Software-defined networking in cellular radio access networks: Potential and challenges. IEEE Commun. Mag. 2015, 53, 150–156. [Google Scholar] [CrossRef]
- Szabo, D.; Gulyas, A.; Fitzek, F.H.P.; Lucani, D.E. Towards the tactile internet: Decreasing communication latency with net-work coding and software defined networking. In Proceedings of the European Wireless 2015 21th European Wireless Conference, Budapest, Hungary, 20–22 May 2015; pp. 428–433. [Google Scholar]
- Aijaz, A.; Dohler, M.; Aghvami, A.H.; Friderikos, V.; Frodigh, M. Realizing the Tactile Internet: Haptic Communications over Next Generation 5G Cellular Networks. IEEE Wirel. Commun. 2017, 24, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Chitimalla, D.; Thota, S.; Savas, S.S.; Tornatore, M.; Lee, S.S.; Lee, H.H.; Park, S.; Chung, H.S.; Mukherjee, B. Application-aware software defined EPON access network. Photonic Netw. Commun. 2015, 30, 324–336. [Google Scholar] [CrossRef] [Green Version]
- Available online: Http://www.ieee1904.org/revision/meeting_archive/2015/10/rmtf_1510_kramer_multicast_outline_1.pdf (accessed on 22 February 2021).
- Rimal, B.P.; Maier, M.; Satyanarayanan, M. Experimental Testbed for Edge Computing in Fiber-Wireless Broadband Access Networks. IEEE Commun. Mag. 2018, 56, 160–167. [Google Scholar] [CrossRef]
- Hwang, I.S.; Lee, J.Y.; Lai, K.R.; Liem, A.T. Generic QoS-Aware Interleaved dynamic bandwidth allocation in scalable EPONs. J. Opt. Commun. Netw. 2012, 4, 99–107. [Google Scholar] [CrossRef]
- Pakpahan, A.F.; Hwang, I.-S.; Nikoukar, A. OLT Energy Savings via Software-Defined Dynamic Resource Provisioning in TWDM-PONs. J. Opt. Commun. Netw. 2017, 9, 1019–1029. [Google Scholar] [CrossRef]
- Nakayama, Y.; Hisano, D. Wavelength and Bandwidth Allocation for Mobile Fronthaul in TWDM-PON. IEEE Trans. Commun. 2019, 67, 7642–7655. [Google Scholar] [CrossRef]
- Sarigiannidis, A.G.; Iloridou, M.; Nicopolitidis, P.; Papadimitriou, G.; Pavlidou, F.-N.; Sarigiannidis, P.G.; Louta, M.D.; Vitsas, V. Architectures and Bandwidth Allocation Schemes for Hybrid Wireless-Optical Networks. IEEE Commun. Surv. Tutor. 2014, 17, 427–468. [Google Scholar] [CrossRef]
- Rafiq, A.; Hayat, M.F. QoS-Based DWBA Algorithm for NG-EPON. Electronics 2019, 8, 230. [Google Scholar] [CrossRef] [Green Version]
- Liem, A.T.; Hwang, I.S.; Nikoukar, A.A.; Pakphan, A.F. SD-enabled mobile fronthaul dynamic bandwidth and wavelength allocation (DWBA) mechanism in converged TWDM-EPON architecture. In Proceedings of the 2018 6th International Conference on Cyber and IT Service Management (CITSM), Parapat, Indonesia, 7–9 August 2018; pp. 1–6. [Google Scholar]
- Neaime, J.; Dhaini, A.R. Resource Management in Cloud and Tactile-Capable Next-Generation Optical Access Networks. J. Opt. Commun. Netw. 2018, 10, 902–914. [Google Scholar] [CrossRef]
Non-SD Architecture [9,19,28] | Proposed TI-SDOAN Architecture | |
---|---|---|
A change in the standard PON configuration is required | Yes | Yes |
Require SD controller and SD-agent | No | Yes |
Discovery and registration | MPCP | MPCP and OpenFlow messages |
ONU wavelength tuning | Modified MPCP | OpenFlow messages |
ONU-AP transmission link-rate tuning | Modified MPCP | OpenFlow messages |
DWBA | Yes | Yes, Programmable |
Deployment can be rearranged dynamically | No | Yes |
Use Cases | Traffic Types | Reliabilty (%) | Latency (ms) | Jitter (ms) | Packet Loss Rate | Data Rate |
---|---|---|---|---|---|---|
Teleoperation (Master→Slave) [2] | Haptics | 99.999 | 1–10 (High dynamic Environment | - | - | 1–4 pkts/s |
10–100 (medium dynamic Environment) | - | - | 100–500 pkts/s | |||
Teleoperation | Video | 99.999 | 10–20 | - | - | 1–100 Mbps |
(Slave→Master) | Audio | 99.9 | 10–20 | - | - | 5–512 Kbps |
[2] | Haptic Feedback | 99.999 | 1–10 | - | - | 1–4 kbps |
Telesurgery [44] | Haptic Feedback | Force | 3–10 | <2 | <10−4 | 128–400 kbps |
Vibration | <5.5 | <2 | <10−4 | 128–400 kbps | ||
Live-Multimedia stream [44] | 2D Camera | - | <150 | 3–30 | <10−3 | <10 Mbps |
3D Camera | - | <150 | 3–30 | <10−3 | 137 Mbps–1.6 Gbps | |
Audio | - | <150 | <30 | <10−2 | 22–200 kbps | |
Physical Vital Signs [44] | Blood Pressure | - | <250 | - | <10−3 | <10 kbps |
Heart Rate | - | <250 | - | <10−3 | <10 kbps | |
ECG | - | <250 | - | <10−3 | 72 kbps | |
Immersive Virtual Reality (Master→Slave User→IVR System) [2] | Haptic Feedback | 99.9 99.999 | <5 | - | - | 1–4 k pkts/s 100–500 pkts/s |
(Master→Slave) [2] | Video | 99.999 | <10 | - | - | 1–100 Mbps |
Audio | 99.9 | <10 | - | - | 5–512 kbps | |
Haptic Feedback | 99.9 | 1–150 | - | - | 1–4 k pkts/s |
Service Type | Applications | Quality of Service | ||
---|---|---|---|---|
Data Rate | End-To-End Delay (One-Way) | CoS Priority | ||
(TI) | Telesurgery | 10–100 mb/s | ≤0.5 ms | 1 |
Virtual Reality | ||||
(EF) | Voice Over IP | 4–128 kb/s | 100–150 ms | 2 |
Audio conferencing | ||||
(AF) | Video Streaming | 20 kb/s–6 mb/s | 150–250 ms | 3 |
Video Conferencing | ||||
(BE) | Web browsing | Minimum Throughput | 4 |
Parameter | Value |
---|---|
Number of SD-OLT | 1 |
Number of SD-ONU-AP | 64 |
Number of Wavelengths | 4 |
Up/Down link capacity | 4 Gbps |
OLT-ONU distance | 10–20 km |
Max cycle time | 1.0 ms, 1.5 ms |
Guard time | 1 μs |
Tuning time | 100 ns |
DWBA Computation | 10 μs |
Control message length (bytes) | 64 |
ONU buffer size | 10 Mb |
Non-TI packet size (bytes) | (64, 1518) |
Non-TI (EF) packet size (bytes) | Constant (70) |
TI packet Size (bytes) | (64, 1518) |
Traffic distribution | Pareto |
Class of Service (CoS) | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|
TI (Tactile Internet) | 24% | 30% | 36% |
EF (Voice) | 10% | 10% | 10% |
AF(Video) | 16% | 20% | 24% |
BE (Data) | 50% | 40% | 30% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganesan, E.; Hwang, I.-S.; Liem, A.T.; Ab-Rahman, M.S. 5G-Enabled Tactile Internet Resource Provision via Software-Defined Optical Access Networks (SDOANs). Photonics 2021, 8, 140. https://doi.org/10.3390/photonics8050140
Ganesan E, Hwang I-S, Liem AT, Ab-Rahman MS. 5G-Enabled Tactile Internet Resource Provision via Software-Defined Optical Access Networks (SDOANs). Photonics. 2021; 8(5):140. https://doi.org/10.3390/photonics8050140
Chicago/Turabian StyleGanesan, Elaiyasuriyan, I-Shyan Hwang, Andrew Tanny Liem, and Mohammad Syuhaimi Ab-Rahman. 2021. "5G-Enabled Tactile Internet Resource Provision via Software-Defined Optical Access Networks (SDOANs)" Photonics 8, no. 5: 140. https://doi.org/10.3390/photonics8050140
APA StyleGanesan, E., Hwang, I. -S., Liem, A. T., & Ab-Rahman, M. S. (2021). 5G-Enabled Tactile Internet Resource Provision via Software-Defined Optical Access Networks (SDOANs). Photonics, 8(5), 140. https://doi.org/10.3390/photonics8050140