A Fast Accurate Attention-Enhanced ResNet Model for Fiber-Optic Distributed Acoustic Sensor (DAS) Signal Recognition in Complicated Urban Environments
Abstract
:1. Introduction
- (1)
- An end-to-end ResNet network is proposed for DAS signal recognition. The recognition accuracy can be further improved by 1.3%, and the time for each signal sample can be saved by 40% compared to the common 2-D CNN network. This also shows the training and the online test processes both speed up through the residual blocks in ResNet. Furthermore, the generalization capability is also improved a lot in more challenging, atypical, and inconsistent signal recognition under multi-scenario conditions.
- (2)
- An attention module with a CBAM is added to the ResNet network, which enables the model to focus on the key features of the signal quickly and automatically through both the local structure and channel attention. This highlights the difference between significant structural information and channel information, thus achieving a high recognition rate of 99.014% for four typical DAS events in urban communication cable monitoring.
- (3)
- The effectiveness of different methods of extracting deep features is evaluated via the Euclidean distance between the posterior probabilities, classified correctly and incorrectly, which are calculated in a matrix. It assumes when the Euclidean distances between the posterior probabilities, classified correctly and incorrectly, for one type of sample are more considerable, the degree of feature distinguishability is stronger. In this way, different models’ feature extraction capabilities can be measured by an objective parameter rather than only based on classification accuracy.
2. Recognition Methodology with the Attention-Enhanced ResNet Model in DAS
2.1. Data Collection with DAS
2.2. Data Preprocessing
2.3. Attention-Enhanced ResNet Network Construction
2.4. Training of the Network
3. Real Field Test Results and Discussion
3.1. Field Data Collection and Preprocessing
3.2. Realization and Optimization of the Proposed ResNet+CBAM Network
3.3. Performance Evaluation of the Proposed ResNet+CBAM
3.4. The Computation Efficiency of the Proposed Method
3.5. The Challenging Test Case in Fields
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Taylor, H.F.; Juarez, J.C. Distributed fiber-optic intrusion sensor system. J. Lightwave Technol. 2005, 23, 2081–2087. [Google Scholar]
- Wang, Z.; Zeng, J.; Li, J.; Peng, F.; Zhang, L.; Zhou, Y.; Wu, H.; Rao, Y. 175km phase-sensitive OTDR with hybrid distributed amplification. In Proceedings of the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2–6 June 2014; Volume 9157, pp. 1562–1565. [Google Scholar]
- Wu, H.; Qian, Y.; Zhang, W.; Tang, C. Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring. Photonic Sens. 2017, 7, 305–310. [Google Scholar] [CrossRef]
- Lyu, A.; Li, J. On-line monitoring system of 35 kV 3-core submarine power cable based on φ-OTDR. Sens. Actuators A Phys. 2018, 273, 134–139. [Google Scholar]
- Wu, H.; Wang, Z.; Peng, F.; Peng, Z.; Li, X.; Yu, W.; Rao, Y. Field test of a fully distributed fiber optic intrusion detection system for long-distance security monitoring of national borderline. In Proceedings of the 23rd International Conference on Optical Fiber Sensors, Santander, Spain, 2–6 June 2014; Volume 9157, pp. 1285–1288. [Google Scholar]
- Williams, E.; Fernández-Ruiz, M.; Magalhaes, R.; Vanthillo, R.; Zhan, Z.; González-Herráez, M.; Martins, H.F. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat. Commun. 2019, 10, 5778. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.; Wang, Z.; Wu, H.; Ran, Z.; Han, B. Recent advances in phase-sensitive optical time domain reflectometry (Φ-OTDR). Photonic Sens. 2021, 11, 1–30. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, X.; Liu, E.; Fu, C.; Zhang, H.; Lu, Z. Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer. Appl. Opt. 2016, 55, 7810. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ba, D.; Chu, Q.; Qiu, L.; Zhou, D.; Dong, Y. High-sensitivity distributed dynamic strain sensing by combining Rayleigh and Brillouin scattering. Opto-Electron. Adv. 2020, 3, 200013. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, J.; Guo, N.; Zhu, T. Distributed optical fiber sensor for dynamic measurement. J. Lightwave Technol. 2021, 39, 3801–3811. [Google Scholar] [CrossRef]
- Shao, L.Y.; Liu, S.; Bandyopadhyay, S.; Yu, F.; Xu, W.; Wang, C.; Zhang, J. Data-driven distributed optical vibration sensors: A review. IEEE Sens. J. 2019, 20, 6224–6239. [Google Scholar] [CrossRef]
- Lu, Y.; Tao, Z.; Liang, C.; Bao, X. Distributed vibration sensor based on coherent detection of Phase-OTDR. J. Lightwave Technol. 2010, 28, 3243–3249. [Google Scholar]
- Zhu, T.; Xiao, X.; He, Q.; Diao, D. Enhancement of SNR and spatial resolution in phi-OTDR system by using two-dimensional edge detection method. J. Lightwave Technol. 2013, 31, 2851–2856. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, L.; Bao, X. Wavelet denoising method for improving detection performance of distributed vibration sensor. IEEE Photonics Technol. Lett. 2012, 24, 542. [Google Scholar] [CrossRef]
- Hui, X.; Zheng, S.; Zhou, J.; Hao, C.; Jin, X.; Zhang, X. Hilbert-Huang transform time-frequency analysis in phi-OTDR distributed sensor. IEEE Photonics Technol. Lett. 2014, 26, 2403–2406. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.; Wu, X.; Wu, Y. Real intrusion detection for distributed fiber fence in practical strong fluctuated noisy backgrounds. Sens. Lett. 2012, 10, 1557–1561. [Google Scholar] [CrossRef]
- Wu, H.; Xiao, S.; Li, X.; Wang, Z.; Xu, J.; Rao, Y. Separation and determination of the disturbing signals in Phase-sensitive optical time domain reflectometry (Φ-OTDR). J. Lightwave Technol. 2015, 33, 3156–3162. [Google Scholar] [CrossRef]
- Liu, S.; Yu, F.; Hong, R.; Xu, W.; Shao, L.; Wang, F. Advances in phase-sensitive optical time-domain reflectometry. Opto-Electron. Adv. 2022, 5, 200078. [Google Scholar] [CrossRef]
- Tan, D.; Tian, X.; Wei, S.; Yan, Z.; Hong, Z. An oil and gas pipeline pre-warning system based on Φ-OTDR. In Proceedings of the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2–6 June 2014; Volume 9157, pp. 1269–1272. [Google Scholar]
- Zhu, H.; Pan, C.; Sun, X. Vibration waveform reproduction and location of OTDR based distributed optical-fiber vibration sensing system. In Quantum Sensing and Nanophotonic Devices XI, Proceedings of the International Society for Optics and Photonics, San Francisco, CA, USA, 1–6 February 2014; SPIE: Bellingham, WA, USA, 2014; Volume 8993, pp. 277–282. [Google Scholar]
- Fang, N.; Wang, L.; Jia, D.; Shan, C.; Huang, Z. Walking intrusion signal recognition method for fiber fence system. In Proceedings of the 2009 Asia Communications and Photonics conference and Exhibition (ACP), Shanghai, China, 2–6 November 2009; Volume 52, pp. 2381–2384. [Google Scholar]
- Wang, Z.; Pan, Z.; Ye, Q.; Cai, H.; Qu, R.; Fang, Z. Fast pattern recognition based on frequency spectrum analysis used for intrusion alarming in optical fiber fence. Chin. J. Lasers 2015, 42, 0405010. [Google Scholar] [CrossRef]
- Sun, Q.; Feng, H.; Yan, X.; Zeng, Z. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction. Sensors 2015, 15, 15179–15197. [Google Scholar] [CrossRef]
- Tu, G.; Yu, B.; Zhen, S.; Qian, K.; Zhang, X. Enhancement of signal identification and extraction in a Φ-OTDR vibration Sensor. IEEE Photonics J. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Tejedor, J.; Martins, H.F.; Piote, D.; Macias-Guarasa, J.; Pastor-Graells, J.; Martin-Lopez, S.; González-Herráez, M. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system. J. Lightwave Technol. 2016, 34, 4445–4453. [Google Scholar] [CrossRef]
- Wang, B.; Pi, S.; Sun, Q.; Jia, B. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems. Opt. Eng. 2015, 54, 055104. [Google Scholar] [CrossRef]
- Tian, Q.; Zhao, C.; Zhang, Y.; Qu, H. Intrusion signal recognition in OFPS under multi-level wavelet decomposition based on RVFL neural network. Optik 2017, 146, 38–50. [Google Scholar] [CrossRef]
- Fedorov, A.K.; Anufriev, M.N.; Zhirnov, A.A.; Stepanov, K.V.; Nesterov, E.T.; Namiot, D.E.; Pnev, A.B. Note: Gaussian mixture model for event recognition in optical time-domain reflectometry based sensing systems. Rev. Sci. Instrum. 2016, 87, 036107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, L.; Li, X.; Gao, L.; Zhang, Y. A new convolutional neural network based data-driven fault diagnosis method. IEEE Trans. Ind. Electron. 2017, 65, 5990–5998. [Google Scholar] [CrossRef]
- Xu, C.; Guan, J.; Bao, M.; Lu, J.; Ye, W. Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR. Opt. Eng. 2018, 57, 016103. [Google Scholar] [CrossRef]
- Aktas, M.; Akgun, T.; Demircin, M.U.; Buyukaydin, D. Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications. Fiber Opt. Sens. Appl. 2017, 10208, 102080. [Google Scholar]
- Jiang, F.; Li, H.; Zhang, Z.; Zhang, X. An event recognition method for fiber distributed acoustic sensing systems based on the combination of MFCC and CNN. In Proceedings of the International Conference on Optical Instruments and Technology: Advanced Optical Sensors and Applications, Beijing, China, 28–30 October 2017; Volume 10618, pp. 15–21. [Google Scholar]
- Wu, H.; Chen, J.; Liu, X.; Xiao, Y.; Wang, M.; Zheng, Y.; Rao, Y. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS. J. Lightwave Technol. 2019, 37, 4359–4366. [Google Scholar] [CrossRef]
- Wu, H.; Wang, C.; Liu, X.; Gan, D.; Liu, Y.; Rao, Y.; Olaribigbe, A.O. Intelligent target recognition for distributed acoustic sensors by using both manual and deep features. Appl. Opt. 2021, 60, 6878–6887. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Zhao, L.; Fan, Z. An event recognition method for Φ-OTDR sensing system based on deep learning. Sensors 2019, 19, 3421. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, K.; Jiang, J.; Xu, T.; Wang, S.; Guo, H.; Liu, T. Optical Fiber Distributed Vibration Sensing Using Grayscale Image and Multi-Class Deep Learning Framework for Multi-Event Recognition. IEEE Sens. J. 2021, 21, 19112–19120. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Zhang, H. Pipeline Safety Early Warning Method for Distributed Signal using Bilinear CNN and LightGBM. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; 2021; pp. 4110–4114. [Google Scholar]
- Wu, J.; Guan, L.Y.; Bao, M.; Xu, Y.; Ye, W. Vibration events recognition of optical fiber based on multi-scale 1-D CNN. Opto-Electron. Eng. 2019, 46, 180493. [Google Scholar]
- Wu, H.; Yang, S.; Liu, X.; Xu, C.; Lu, H.; Wang, C.; Olaribigbe, A.O. Simultaneous extraction of multi-scale structural features and the sequential information with an end-to-end mCNN-HMM combined model for DAS. J. Lightwave Technol. 2021, 39, 6606–6616. [Google Scholar] [CrossRef]
- Chen, X.; Xu, C. Disturbance pattern recognition based on an ALSTM in a long-distance φ-OTDR sensing system. Microw. Opt. Technol. Lett. 2019, 62, 1002. [Google Scholar] [CrossRef]
- Sun, M.; Yu, M.; Lv, P.; Li, A.; Wang, H.; Zhang, X.; Zhang, T. Man-made Threat Event Recognition Based on Distributed Optical Fiber Vibration Sensing and SE-WaveNet. IEEE Trans. Instrum. Meas. 2021, 70, 1. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- He, T.; Huang, W.; Qiao, Y.; Yao, J. Text-Attentional Convolutional Neural Network for Scene Text Detection. IEEE Trans. Image Process. 2016, 25, 2529–2541. [Google Scholar] [CrossRef]
- Ferreira, J.F.; Dias, J. Attentional Mechanisms for Socially Interactive Robots–A Survey. IEEE Trans. Auton. Ment. Dev. 2014, 6, 110–125. [Google Scholar] [CrossRef]
- Wang, Q.; Teng, Z.; Xing, J.; Gao, J.; Hu, W.; Maybank, S. Learning Attentions: Residual Attentional Siamese Network for High Performance Online Visual Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2016; pp. 4854–4863. [Google Scholar]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A Survey of the Recent Architectures of Deep Convolutional Neural Networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef] [Green Version]
- Masoudi, A.; Belal, M.; Newson, T.P. A distributed optical fiber dynamic strain sensor based on phase-OTDR. Meas. Sci. Technol. 2013, 24, 085204. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Zhang, C.; Zhu, L.; Yu, L. The attention mechanism in the convolutional neural network review. Comput. Eng. Appl. 2021, 57, 9. [Google Scholar]
Attention Modules | Recognition Accuracy | Training Time/s |
---|---|---|
None | 84.52% | 11 |
SE-NET | 92.21% | 11 |
ECA-NET | 92.28% | 11 |
SK-NET | 90.66% | 13 |
CBAM | 93.23% | 12 |
DANET | 88.37% | 12 |
PFAN | 92.47% | 12 |
Time-Frequency Data Type | Training Size | Validation Size | Test Size | Event Label |
---|---|---|---|---|
Background noises | 2730 | 910 | 910 | 0 |
Traffic interference | 1756 | 585 | 585 | 1 |
Manual digging | 780 | 260 | 260 | 2 |
Mechanical excavations | 819 | 273 | 273 | 3 |
Layers | Kernel Size/Stride/Padding | Input Size |
---|---|---|
Conv1 | 1 × 5 × 5/1 × 1 | 50 × 100 × 1 |
Pool1 | 1 × 25 × 32/1 × 25 | 16 × 46 × 96 |
Residual block1 + CBAM | 1 × 3 × 3/1 × 1/1 × 1 1 × 3 × 3/1 × 1/1 × 1 | 16 × 46 × 96 |
Conv2 | 1 × 5 × 5/1 × 1 | 16 × 23 × 48 |
Pool2 | 1 × 25 × 32/1 × 25 | 32 × 19 × 44 |
Residual block2 + CBAM | 1 × 3 × 3/1 × 1/1 × 1 1 × 3 × 3/1 × 1/1 × 1 | 32 × 19 × 44 |
FC1 | In features = 6336, out features = 144 | 32 × 9 × 22 = 6336 |
FC2 | In features = 144, out features = 4 | 1 × 144 |
Layers | Kernel Size/Stride/Padding | Input Size |
---|---|---|
Conv1 | 3 × 25 × 32/1 × 1/1 × 12 | 50 × 100 × 1 |
Pool1 | 4 × 4 × 32/2 × 2 | 50 × 100 × 32 |
CBAM1 | 1 × 3 × 3/1 × 1/1 × 1 1 × 3 × 3/1 × 1/1 × 1 | 50 × 100 × 32 |
Conv2 | 3 × 25 × 64/1 × 1/1 × 12 | 24 × 49 × 32 |
Pool2 | 4 × 4 × 64/2 × 2 | 24 × 49 × 64 |
CBAM2 | 1 × 3 × 3/1 × 1/1 × 1 1 × 3 × 3/1 × 1/1 × 1 | 24 × 49 × 64 |
Conv3 | 3 × 25 × 96/1 × 1/1 × 12 | 4 × 10 × 64 |
Pool3 | 4 × 4 × 96/2 × 2 | 4 × 10 × 96 |
CBAM3 | 1 × 3 × 3/1 × 1/1 × 1 1 × 3 × 3/1 × 1/1 × 1 | 4 × 10 × 96 |
FC1 | In features = 3840, out features = 200 | 4 × 10 × 96 = 3840 |
FC2 | In features = 200, out features = 4 | 1 × 200 |
Model | Label | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
1-D CNN [33] | 0 | 0.9875 | 0.9861 | 0.9905 | 0.9655 |
1 | 0.9537 | 0.9684 | 0.9775 | ||
2 | 0.9553 | 0.9538 | 0.9372 | ||
3 | 0.9640 | 0.9351 | 0.9476 | ||
2-D CNN | 0 | 0.9947 | 0.9788 | 0.9867 | 0.9698 |
1 | 0.9553 | 0.9727 | 0.9639 | ||
2 | 0.9263 | 0.9667 | 0.9461 | ||
3 | 0.9652 | 0.9470 | 0.9560 | ||
ResNet | 0 | 0.9941 | 0.9802 | 0.9871 | 0.9711 |
1 | 0.9586 | 0.9749 | 0.9667 | ||
2 | 0.9332 | 0.9667 | 0.9497 | ||
3 | 0.9670 | 0.9504 | 0.9586 | ||
2-D CNN+CBAM | 0 | 0.9934 | 0.9919 | 0.9926 | 0.9879 |
1 | 0.9931 | 0.9644 | 0.9785 | ||
2 | 0.9719 | 0.9769 | 0.9744 | ||
3 | 0.9780 | 0.9880 | 0.9830 | ||
ResNet+CBAM | 0 | 0.9949 | 0.9912 | 0.9930 | 0.9889 |
1 | 0.9943 | 0.9897 | 0.9920 | ||
2 | 0.9845 | 0.9769 | 0.9807 | ||
3 | 0.9698 | 0.9897 | 0.9796 |
Event Type | Typical and Inconsistent | Atypical and Inconsistent |
---|---|---|
Label 0 | 250 | 250 |
Label 1 | 250 | 250 |
Label 2 | 250 | 250 |
Label 3 | 250 | 250 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wu, H.; Wang, Y.; Tu, Y.; Sun, Y.; Liu, L.; Song, Y.; Wu, Y.; Yan, G. A Fast Accurate Attention-Enhanced ResNet Model for Fiber-Optic Distributed Acoustic Sensor (DAS) Signal Recognition in Complicated Urban Environments. Photonics 2022, 9, 677. https://doi.org/10.3390/photonics9100677
Liu X, Wu H, Wang Y, Tu Y, Sun Y, Liu L, Song Y, Wu Y, Yan G. A Fast Accurate Attention-Enhanced ResNet Model for Fiber-Optic Distributed Acoustic Sensor (DAS) Signal Recognition in Complicated Urban Environments. Photonics. 2022; 9(10):677. https://doi.org/10.3390/photonics9100677
Chicago/Turabian StyleLiu, Xinyu, Huijuan Wu, Yufeng Wang, Yunlin Tu, Yuwen Sun, Liang Liu, Yuanfeng Song, Yu Wu, and Guofeng Yan. 2022. "A Fast Accurate Attention-Enhanced ResNet Model for Fiber-Optic Distributed Acoustic Sensor (DAS) Signal Recognition in Complicated Urban Environments" Photonics 9, no. 10: 677. https://doi.org/10.3390/photonics9100677
APA StyleLiu, X., Wu, H., Wang, Y., Tu, Y., Sun, Y., Liu, L., Song, Y., Wu, Y., & Yan, G. (2022). A Fast Accurate Attention-Enhanced ResNet Model for Fiber-Optic Distributed Acoustic Sensor (DAS) Signal Recognition in Complicated Urban Environments. Photonics, 9(10), 677. https://doi.org/10.3390/photonics9100677