A Universal Phase Error Analysis for Optical Frequency Tuning Lasers Utilized in Fiber Sensing with OFDR
Abstract
:1. Introduction
2. Theory and Implementation
3. Simulations and Experiments
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of the Symbols and Abbreviations
Symbol/Abbreviation | Meaning |
SCL | Semiconductor laser |
MZI | Mach–Zender Interferometer |
CPL | Optical coupler |
BPD | Balanced photodetector |
CL | Laser frequency-sweep control loop |
System sampling rate | |
MZI delay time | |
Controlling period | |
Initial optical frequency | |
Optical tuning rate | |
Optical frequency error | |
Optical bandwidth |
References
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Pan, J.; Guan, K.; Qiu, X.; Wang, W.; Zhang, M.; Jiang, J.; Zhang, E.; Zhou, F.Q. Advantages of low-cost, miniature, intelligent EDFAs for next-generation dynamic metro/access networks. Opt. Fiber Technol. 2003, 9, 80–94. [Google Scholar] [CrossRef]
- Yao, Z.; Mauldin, T.; Xu, Z.; Hefferman, G.; Wei, T. Compact multifunction digital OFDR system without using an auxiliary interferometer. Appl. Opt. 2021, 60, 7523–7529. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Wei, T.; Hefferman, G.; Ren, K. Real-time signal processing for sub-THz range grating-based distributed fiber sensing. Rev. Sci. Instrum. 2018, 89, 085005. [Google Scholar] [CrossRef] [PubMed]
- Holzwarth, R.; Udem, T.; Hänsch, T.W.; Knight, J.; Wadsworth, W.; Russell, P.S.J. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 2000, 85, 2264. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Mauldin, T.; Xu, Z.; Hefferman, G.; Wei, T. Breaking limitations of fiber identification in traditional OFDR systems via compensation of initial optical frequency instability. Opt. Lett. 2020, 45, 6086–6089. [Google Scholar] [CrossRef]
- Du, Y.; Jothibasu, S.; Zhuang, Y.; Zhu, C.; Huang, J. Unclonable Optical Fiber Identification Based on Rayleigh Backscattering Signatures. J. Light. Technol. 2017, 35, 4634–4640. [Google Scholar] [CrossRef]
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P.R. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev. 2019, 6, 041302. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, L.; Liu, Z.; Zhang, Y.; Zhang, Y. Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Opt. Lett. 2017, 42, 2948–2951. [Google Scholar] [CrossRef]
- DiLazaro, T.; Nehmetallah, G. Large-volume, low-cost, high-precision FMCW tomography using stitched DFBs. Opt. Express. 2018, 26, 2891–2904. [Google Scholar] [CrossRef]
- Xie, W.; Zhou, Q.; Bretenaker, F.; Xia, Z.; Shi, H.; Qin, J.; Dong, Y.; Hu, W. Fourier transform-limited optical frequency-modulated continuous-wave interferometry over several tens of laser coherence lengths. Opt. Lett. 2016, 41, 2962–2965. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Mauldin, T.; Hefferman, G.M.; Wei, T. Digitally integrated self-trained pre-distortion curve finder for passive sweep linearization of semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–5. [Google Scholar]
- Colautti, M.; Piccioli, F.S.; Ristanovic, Z.; Lombardi, P.; Moradi, A.; Adhikari, S.; Deperasinska, I.; Kozankiewicz, B.; Orrit, M.; Toninelli, C. Laser-induced frequency tuning of Fourier-limited single-molecule emitters. ACS Nano 2020, 14, 13584–13592. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Haldar, M.; Li, L.; Mendis, F. Enhancement of modulation bandwidth of laser diodes by injection locking. IEEE Photonics Technol. Lett. 1996, 8, 34–36. [Google Scholar] [CrossRef]
- Martin, A.; Dodane, D.; Leviandier, L.; Dolfi, D.; Naughton, A.; O’Brien, P.; Spuessens, T.; Baets, R.; Lepage, G.; Verheyen, P. Photonic integrated circuit-based FMCW coherent LiDAR. J. Light. Technol. 2018, 36, 4640–4645. [Google Scholar] [CrossRef]
- Huang, D.; Tran, M.A.; Guo, J.; Peters, J.; Komljenovic, T.; Malik, A.; Morton, P.A.; Bowers, J.E. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica 2019, 6, 745–752. [Google Scholar] [CrossRef] [Green Version]
- Riemensberger, J.; Lukashchuk, A.; Karpov, M.; Weng, W.; Lucas, E.; Liu, J.; Kippenberg, T.J. Massively parallel coherent laser ranging using a soliton microcomb. Nature 2020, 581, 164–170. [Google Scholar] [CrossRef]
- Dai, J.; Karpowicz, N.; Zhang, X.C. Coherent Polarization Control of Terahertz Waves Generated from Two-Color Laser-Induced Gas Plasma. Phys. Rev. Lett. 2009, 103, 23001. [Google Scholar] [CrossRef]
- Henry, C. Phase noise in semiconductor lasers. J. Light. Technol. 1986, 4, 298–311. [Google Scholar] [CrossRef]
- Huynh, T.N.; Dúill, S.P.Ó.; Nguyen, L.; Rusch, L.A.; Barry, L.P. Simple analytical model for low-frequency frequency-modulation noise of monolithic tunable lasers. Appl. Opt. 2014, 53, 830–835. [Google Scholar] [CrossRef]
- Yao, Z.; Mauldin, T.; Xu, Z.; Hefferman, G.; Wei, T. An integrated OFDR system using combined swept-laser linearization and phase error compensation. IEEE Trans. Instrum. Meas. 2020, 70, 1–8. [Google Scholar] [CrossRef]
- Zhao, E.; Shen, H.; Liu, S.; Liu, G.; Zhou, B.; Wang, C.; Xing, C.; Miao, P.; Shi, Y. Auxiliary interferometer in an optoelectronic swept-frequency laser and its application to the measurement of the group refractive index. Appl. Opt. 2020, 59, 10294–10303. [Google Scholar] [CrossRef]
- Guo, R.; Lu, J.; Liu, S.; Shi, Y.; Zhou, Y.; Chen, Y.; Luan, J.; Chen, X. Multisection DFB tunable laser based on REC technique and tuning by injection current. IEEE Photonics J. 2016, 8, 1–7. [Google Scholar] [CrossRef]
- Karlsson, C.J.; Olsson, F.Å. Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance. Appl. Opt. 1999, 38, 3376–3386. [Google Scholar] [CrossRef]
- Yao, Z.; Xu, Z.; Mauldin, T.; Hefferman, G.; Wei, T. A reconfigurable architecture for continuous double-sided swept-laser linearization. J. Light. Technol. 2020, 38, 5170–5176. [Google Scholar] [CrossRef]
- Yao, Z.; Mauldin, T.; Hefferman, G.; Xu, Z.; Liu, M.; Wei, T. Low-cost optical fiber physical unclonable function reader based on a digitally integrated semiconductor LiDAR. Appl. Opt. 2019, 58, 6211–6216. [Google Scholar] [CrossRef]
- Delprat, N.; Escudié, B.; Guillemain, P.; Kronland-Martinet, R.; Tchamitchian, P.; Torresani, B. Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies. IEEE Trans. Inf. Theory 1992, 38, 644–664. [Google Scholar] [CrossRef] [Green Version]
- Urick, V.J.; Bucholtz, F.; Devgan, P.S.; McKinney, J.D.; Williams, K.J. Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links. IEEE Trans. Microw. Theory Tech. 2007, 55, 1978–1985. [Google Scholar] [CrossRef]
- Kay, S.M. Fundamentals of statistical signal processing: Estimation theory. Technometrics 1993, 37, 465. [Google Scholar]
- Xu, Z.; Mauldin, T.; Yao, Z.; Pei, S.; Wei, T.; Yang, Q. A Bus Authentication and Anti-Probing Architecture Extending Hardware Trusted Computing Base Off CPU Chips and Beyond. In Proceedings of the 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), Valencia, Spain, 30 May–3 June 2020; pp. 749–761. [Google Scholar]
Symbols | Values |
---|---|
Theory | Simulation | Simulation Mean | Error Rate (%) | |
---|---|---|---|---|
10,000 | 99,616 | 1031 | 0.39 | |
31,623 | 32,877 | −632 | 3.82 | |
22,361 | 21,495 | −482 | 5.98 |
Components | Name or Values |
---|---|
, , | |
, , |
Components | Name or Values |
---|---|
, , | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Z.; Yuan, Z.; Gu, G.; Chen, Q.; Sui, X. A Universal Phase Error Analysis for Optical Frequency Tuning Lasers Utilized in Fiber Sensing with OFDR. Photonics 2022, 9, 922. https://doi.org/10.3390/photonics9120922
Yao Z, Yuan Z, Gu G, Chen Q, Sui X. A Universal Phase Error Analysis for Optical Frequency Tuning Lasers Utilized in Fiber Sensing with OFDR. Photonics. 2022; 9(12):922. https://doi.org/10.3390/photonics9120922
Chicago/Turabian StyleYao, Zheyi, Zhewen Yuan, Guohua Gu, Qian Chen, and Xiubao Sui. 2022. "A Universal Phase Error Analysis for Optical Frequency Tuning Lasers Utilized in Fiber Sensing with OFDR" Photonics 9, no. 12: 922. https://doi.org/10.3390/photonics9120922
APA StyleYao, Z., Yuan, Z., Gu, G., Chen, Q., & Sui, X. (2022). A Universal Phase Error Analysis for Optical Frequency Tuning Lasers Utilized in Fiber Sensing with OFDR. Photonics, 9(12), 922. https://doi.org/10.3390/photonics9120922