Aqueous Solution Equilibria and Spectral Features of Copper Complexes with Tripeptides Containing Glycine or Sarcosine and Leucine or Phenylalanine
Abstract
:1. Introduction
2. Results and Discussions
2.1. Potentiometry
2.2. Ultraviolet-Visible Spectrophotometry (UV-Vis)
2.3. Electron Paramagnetic Resonance (EPR) Measurements
2.4. H NMR Spectroscopy
2.5. Mass Spectrometry
2.6. DFT Calculations
3. Materials and Methods
3.1. Materials
3.2. Potentiometric Measurements
3.3. Continuous Wave EPR Measurements
3.4. Preparation of Copper Complexes for EPR Measurements
3.5. Nuclear Magnetic Resonance (NMR)
3.6. Mass Spectrometry
3.7. Density Functional Theory (DFT) Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Odisitse, S.; Jackson, G.E. In vitro and in vivo studies of the dermally absorbed Cu(II) complexes of N5O2 donor ligands-Potential anti-inflammatory drugs. Inorg. Chim. Acta 2009, 362, 125–135. [Google Scholar] [CrossRef]
- Wang, D.; Miller, S.C.; Liu, X.-M.; Anderson, B.; Wang, X.S.; Goldring, S.R. Noveldexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res. Ther. 2007, 9, R2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koopman, L.W.; Moreland, W.J. Arthritis and Allied Conditions: A Textbook of Rheumatology, 15th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Morrey, B.; Adams, R. Semiconstrained elbow replacement for distal humeral nonunion. J. Bone Jt. Surg. Br. 1995, 77-B, 67–72. [Google Scholar] [CrossRef]
- Zvimba, J.N.; Jackson, G.E. Copper chelating anti-inflammatory agents; N1-(2-aminoethyl)-N2-(pyridin-2-ylmethyl)-ethane-1,2-diamine and N-(2-(2-aminoethylamino)ethyl)picolinamide: An in vitro and in vivo study. J. Inorg. Biochem. 2007, 101, 148–158. [Google Scholar] [CrossRef]
- Odisitse, S.; Jackson, G.E. In vitro and in vivo studies of N,N′-bis[2 (2-pyridyl)-methyl]pyridine-2,6-dicarboxamide–copper(II) and rheumatoid arthritis. Polyhedron 2008, 27, 453–464. [Google Scholar] [CrossRef]
- Khurana, R.; Berney, S.M. Clinical aspects of rheumatoid arthritis. Pathophysiology 2005, 12, 153–165. [Google Scholar] [CrossRef]
- Weinblatt, M.E.; Kuritzky, L. RAPID: Rheumatoid arthritis. J. Fam. Pract. 2007, 56, S1–S7. [Google Scholar]
- Suresh, E. Diagnosis of early rheumatoid arthritis: What the non-specialist needs to know. JRSM 2004, 97, 421–424. [Google Scholar] [CrossRef]
- Jackson, G.E.; May, P.M.; Williams, D.R. Metal-ligand complexes involved in rheumatoid arthritis—I. J. Inorg. Nucl. Chem. 1978, 40, 1189–1194. [Google Scholar] [CrossRef]
- Hardin, G.L.; Longenecker, J.G. Handbook of drug therapy in rheumatic disease. Pharmacology and clinical aspects, 1st ed.; Little, Brown and Company: London, UK, 1992. [Google Scholar]
- Nordberg, G.F.; Fowler, B.A.; Nordberg, M. (Eds.) Handbook on the Toxicology of Metals, 4th ed.; Elsevier: London, UK; San Diego, CA, USA,, 2015. [Google Scholar]
- Lahey, M.E.; Gubler, C.J.; Cartwright, G.E.; Wintrobe, M.M. Studies on copper metabolism. VI. Blood copper in normal human subjects. J. Clin. Invest. 1953, 32, 322–328. [Google Scholar] [CrossRef]
- Weder, J.E.; Hambley, T.W.; Kennedy, B.J.; Lay, P.A.; MacLachlan, D.; Bramley, R.; Delfs, C.D.; Murray, K.S.; Moubaraki, B.; Warwick, B.; et al. Anti-Inflammatory Dinuclear Copper(II) Complexes with Indomethacin. Synthesis, Magnetism and EPR Spectroscopy. Crystal Structure of the N,N-Dimethylformamide Adduct. Inorg. Chem. 1999, 38, 1736–1744. [Google Scholar] [CrossRef] [PubMed]
- Sorenson, J.R.J. Copper Chelates as Possible Active Forms of the Antiarthritic Agents. J. Med. Chem. 1976, 19, 135–148. [Google Scholar] [CrossRef]
- Jackson, G.E.; May, P.M.; Williams, D.R. Metal-ligand complexes involved in rheumatoid arthritis—VI: Computer models simulating the low molecular weight complexes present in blood plasma for normal and arthritic individuals. J. Inorg. Nucl. Chem. 1978, 40, 1227–1234. [Google Scholar] [CrossRef]
- Linder, M.C.; Hazegh-Azam, M. Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 1996, 63, 797S–811S. [Google Scholar] [CrossRef]
- Zvimba, J.N.; Jackson, G.E. Thermodynamic and spectroscopic study of the interaction of Cu(II), Ni(II), Zn(II) and Ca(II) ions with 2-amino-N-(2-oxo-2-(2-(pyridin-2-yl)ethyl amino)ethyl)acetamide, a pseudo-mimic of human serum albumin. Polyhedron 2007, 26, 2395–2404. [Google Scholar] [CrossRef]
- Perrone, L.; Mothes, E.; Vignes, M.; Mockel, A.; Figueroa, C.; Miquel, M.-C.; Maddelein, M.-L.; Faller, P. Copper Transfer from Cu-Aβ to Human Serum Albumin Inhibits Aggregation, Radical Production and Reduces Aβ Toxicity. ChemBioChem 2009, 11, 110–118. [Google Scholar] [CrossRef]
- Weder, J.E.; Dillon, C.T.; Hambley, T.W.; Kennedy, B.J.; Lay, P.A.; Biffin, J.R.; Regtop, H.L.; Davies, N.M. Copper complexes of non-steroidal anti-inflammatory drugs: An opportunity yet to be realized. Coord. Chem. Rev. 2002, 232, 95–126. [Google Scholar] [CrossRef]
- Odisitse, S.; Jackson, G.E.; Govender, T.; Kruger, H.G.; Singh, A. Chemical speciation of copper(II) diaminediamide derivative of pentacycloundecane-A potential anti-inflammatory agent. Dalt. Trans. 2007, 1140–1149. [Google Scholar] [CrossRef]
- Odisitse, S. In Vivo Bio-Distribution Study of 64Cu (II)-Labelled Copper (II) Complexes of Peptides Mimics in Balb/C Mice-Development of Copper Based Anti-Inflammatory Agents. MOJ Bioorganic Org. Chem. 2017, 1, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Gruchlik, A.; Jurzak, M.; Chodurek, E.; Dzierzewicz, Z. Effect of Gly-Gly-His, Gly-His-Lys and their copper complexes on TNF-alpha-dependent IL-6 secretion in normal human dermal fibroblasts. Acta Pol. Pharm. 2012, 69, 1303–1306. [Google Scholar] [PubMed]
- Hostynek, J.J.; Dreher, F.; Maibach, H.I. Human skin penetration of a copper tripeptide in vitro as a function of skin layer. Inflamm. Res. 2011, 60, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Elmagbari, F.M.A. Synthesis and Design of Ligand Copper Complexes as Anti-Inflammatory Drugs, Synthesis and Design of Ligand Copper Complexes as Anti-Inflammatory Drugs. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2015. [Google Scholar]
- Vicatos, G.M. In Vitro Studies of Dermally Absorbed Cu(II) Tripeptide Complexes as Potential Anti-Inflammatory Drugs, In Vitro Studies of Dermally Absorbed Cu(II) Tripeptide Complexes as Potential Anti-Inflammatory Drugs. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2016. [Google Scholar]
- Hammouda, A.N. Development of Copper Peptide Complexes as Anti-Inflammatory Drugs, Development of Copper Peptide Complexes as Anti-Inflammatory Drugs. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2015. [Google Scholar]
- Pickart, L.; Freedman, J.H.; Loker, W.J.; Peisach, J.; Perkins, C.M.; Stenkamp, R.E.; Weinstein, B. Growth-modulating plasma tripeptide may function by facilitating copper uptake into cells. Nature 1980, 288, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Pickart, L.; Vasquez-Soltero, J.M.; Margolina, A. The Human Tripeptide GHK-Cu in Prevention of Oxidative Stress and Degenerative Conditions of Aging: Implications for Cognitive Health. Oxid. Med. Cell. Longev. 2012, 2012, 324832. [Google Scholar] [CrossRef] [Green Version]
- Hall, H.K. Potentiometric Determination of the Base Strength of Amines in Non-protolytic Solvents. J. Phys. Chem. 1956, 60, 63–70. [Google Scholar] [CrossRef]
- Nakon, R.; Angelici, R.J. Copper(II) complexes of glycylglycine and glycylsarcosine and their methyl esters. Inorg. Chem. 1973, 12, 1269–1274. [Google Scholar] [CrossRef]
- Várnagy, K.; Szabó, J.; Sóvágó, I.; Malandrinos, G.; Hadjiliadis, N.; Sanna, D.; Micera, G. Equilibrium and structural studies on copper(II) complexes of tetra-, penta- and hexa-peptides containing histidyl residues at the C-termini. J. Chem. Soc. Dalt. Trans. 2000, 467–472. [Google Scholar] [CrossRef]
- Turek, M.; Senar, X.L. Potentiometric and Spectroscopic Studies on Di-, Tri- and Tetraglycine with Copper (II) Ions Systems. Food Chem. Biotechnol. 2008, 72, 15–33. [Google Scholar] [CrossRef]
- Sanna, D.; Ágoston, C.G.; Micera, G.; Sóvágó, I. The effect of the ring size of fused chelates on the thermodynamic and spectroscopic properties of peptide complexes of copper(II). Polyhedron 2001, 20, 3079–3090. [Google Scholar] [CrossRef]
- Kozłowski, H.; Bal, W.; Dyba, M.; Kowalik-Jankowska, T. Specific structure–stability relations in metallopeptides. Coord. Chem. Rev. 1999, 184, 319–346. [Google Scholar] [CrossRef]
- Housecroft, C.E.; Sharpe, A.G. Inorganic Chemistry, 3rd ed.; Pearson: London, UK, 2008. [Google Scholar]
- Lever, A.B.P. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Deeth, R.J.; Hearnshaw, L.J.A. Molecular modelling of Jahn–Teller distortions in Cu(II)N6 complexes: Elongations, compressions and the pathways in between. Dalt. Trans. 2006, 8, 1092–1100. [Google Scholar] [CrossRef]
- Farkas, E.; Csapó, E.; Buglyó, P.; Damante, C.A.; Natale, G. Di Metal-binding ability of histidine-containing peptidehydroxamic acids: Imidazole versus hydroxamate coordination. Inorg. Chim. Acta 2009, 362, 753–762. [Google Scholar] [CrossRef]
- Sigel, H.; Martin, R.B. Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev. 1982, 82, 385–426. [Google Scholar] [CrossRef]
- Prenesti, E.; Daniele, P.G.; Prencipe, M.; Ostacoli, G. Spectrum–structure correlation for visible absorption spectra of copper(II) complexes in aqueous solution. Polyhedron 1999, 18, 3233–3241. [Google Scholar] [CrossRef]
- Billo, E.J. Copper(II) chromosomes and the rule of average environment. Inorg. Nucl. Chem. Lett. 1974, 10, 613–617. [Google Scholar] [CrossRef]
- Hathaway, B.J.; Billing, D.E. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord. Chem. Rev. 1970, 5, 143–207. [Google Scholar] [CrossRef]
- Morrison, R.T.; Boyd, R.N. Organic Chemistry. In Organic Chemistry; Allyn and Bacon: Boston, MA, USA, 1987; pp. 578–580. [Google Scholar]
- Kleckner, I.R.; Foster, M.P. An introduction to NMR-based approaches for measuring protein dynamics. Biochim. Biophys. Acta-Proteins Proteom. 2011, 1814, 942–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, B.; Bushweller, J.H.; Tamm, L.K. Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J. Am. Chem. Soc. 2006, 128, 4389–4397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ure, A.M.; Davidson, C.M. (Eds.) Chemical Speciation in the Environment. In Chemical Speciation in the Environment; Blackwell Science Ltd.: Oxford, UK, 2002; p. 46. ISBN 9780470988312. [Google Scholar]
- Wells, M.A.; Jelinska, C.; Hosszu, L.L.P.; Craven, C.J.; Clarke, A.R.; Collinge, J.; Waltho, J.P.; Jackson, G.S. Multiple forms of copper (II) co-ordination occur throughout the disordered N-terminal region of the prion protein at pH 7.4. Biochem. J. 2006, 400, 501–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.Z.; Jiang, T.; Wang, L.; Yang, H.; Zhang, S.; Zhou, P. Interaction of curcumin with Zn(II) and Cu(II) ions based on experiment and theoretical calculation. J. Mol. Struct. 2010, 984, 316–325. [Google Scholar] [CrossRef]
- Hou, L.; Zagorski, M.G. NMR reveals anomalous copper(II) binding to the amyloid Aβ peptide of Alzheimer’s disease. J. Am. Chem. Soc. 2006, 128, 9260–9261. [Google Scholar] [CrossRef]
- Nuclear Magnetic Resonance: An Introduction. Available online: http://instructor.physics.lsa.umich.edu/adv-labs/NMR/Ch12_NMRTEC.pdf (accessed on 3 November 2019).
- Marusak, R.A.; Doan, K.; Cummings, S.D. Integrated Approach to Coordination Chemistry: An Inorganic Laboratory Guide; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Elmagbari, F.M.; Hammouda, A.N.; Jackson, G.E.; Bonomo, R.P. Stability, solution structure and X-ray crystallography of a copper (II) diamide complex. Inorg. Chim. Acta 2019, 498, 119132. [Google Scholar] [CrossRef]
- Laussac, J.P.; Haran, R.; Sarkar, B.N.m.r. and e.p.r. investigation of the interaction of copper(II) and glycyl-l-histidyl-l-lysine, a growth-modulating tripeptide from plasma. Biochem. J. 1983, 209, 533–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabó, Z. Multinuclear NMR studies of the interaction of metal ions with adenine-nucleotides. Coord. Chem. Rev. 2008, 252, 2362–2380. [Google Scholar] [CrossRef]
- Gizzi, P.; Henry, B.; Rubini, P.; Giroux, S.; Wenger, E. A multi-approach study of the interaction of the Cu(II) and Ni(II) ions with alanylglycylhistamine, a mimicking pseudopeptide of the serum albumine N-terminal residue. J. Inorg. Biochem. 2005, 99, 1182–1192. [Google Scholar] [CrossRef]
- Ross, A.R.S.; Luettgen, S.L. Speciation of cyclo(Pro-Gly)3 and its divalent metal-ion complexes by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 1536–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demarque, D.P.; Crotti, A.E.M.; Vessecchi, R.; Lopes, J.L.C.; Lopes, N.P. Fragmentation reactions using electrospray ionization mass spectrometry: An important tool for the structural elucidation and characterization of synthetic and natural products. Nat. Prod. Rep. 2016, 33, 432–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavanant, H.; Hecquet, E.; Hoppilliard, Y. Complexes of l-histidine with Fe2+, Co2+, Ni2+, Cu2+, Zn2+ studied by electrospray ionization mass spectrometry. Int. J. Mass Spectrom. 1999, 185–187, 11–23. [Google Scholar] [CrossRef]
- Lavanant, H.; Virelizier, H.; Hoppilliard, Y. Reduction of copper(II) complexes by electron capture in an electrospray ionization source. J. Am. Soc. Mass Spectrom. 1998, 9, 1217–1221. [Google Scholar] [CrossRef] [Green Version]
- Ishiwata, A.; Yamabe, S.; Minato, T.; Machiguchi, T. Norcaradiene intermediates in mass spectral fragmentations of tropone and tropothione. J. Chem. Soc. Perkin Trans. 2001, 2, 2202–2210. [Google Scholar] [CrossRef]
- Miessler, G.L.; Tarr, D.A. Inorganic Chemistry, 3rd ed.; Pearson Education, Inc.: Philippines, Manila, 2004. [Google Scholar]
- Rulíšek, L.; Havlas, Z. Theoretical Studies of Metal Ion Selectivity. 1. DFT Calculations of Interaction Energies of Amino Acid Side Chains with Selected Transition Metal Ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+). J. Am. Chem. Soc. 2000, 122, 10428–10439. [Google Scholar] [CrossRef]
- Robertazzi, A.; Magistrato, A.; de Hoog, P.; Carloni, P.; Reedijk, J. Density Functional Theory Studies on Copper Phenanthroline Complexes. Inorg. Chem. 2007, 46, 5873–5881. [Google Scholar] [CrossRef]
- Vogel, A.I. Vogel’s Qualitative Inorganic Analysis; 3rd ed.; Longman: London, UK, 1961. [Google Scholar]
- Covington, A.K.; Robinson, R.A. References standards for the electrometric determination, with ion-selective electrodes, of potassium and calcium in blood serum. Anal. Chim. Acta 1975, 78, 219–223. [Google Scholar] [CrossRef]
- Guilbault, G.G.; Kramer, D.N.; Goldberg, P. The application of modified Nernstian equations to the electrochemical determination of enzyme kinetics. J. Phys. Chem. 1963, 67, 1747–1749. [Google Scholar] [CrossRef]
- Lee, Y.H.; Brosset, C. The slope of Gran’s plot: A useful function in the examination of precipitation, the water-soluble part of airborne particles, and lake water. Water. Air. Soil Pollut. 1978, 10, 457–469. [Google Scholar] [CrossRef]
- Murray, K.; May, P.M. ESTA: Equilibrium Simulation for Titration Analysis; University of Wales, Institute of Science and Technology (UWIST), Department of Applied Chemistry: Cardiff, UK, 1984. [Google Scholar]
- Lund, A.; Vänngård, T. Note on the Determination of the Principal Fine and Hyperfine Coupling Constants in ESR. J. Chem. Phys. 1965, 42, 2979–2980. [Google Scholar] [CrossRef]
- Bonomo, R.P.; Riggi, F. Study of angular anomalies in the X-band powder EPR spectra of copper (II) complexes with axial symmetry. Lett. Al Nuovo Cim. 1981, 30, 304–310. [Google Scholar] [CrossRef]
- Bonomo, R.P.; Riggi, F. Determination of the perpendicular magnetic parameters for Cu(II) EPR spectra from angular anomalies. Chem. Phys. Lett. 1982, 93, 99–102. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 (Revision D.01); Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Chemcraft—Graphical Software for Visualization of Quantum Chemistry Computations. Available online: https://www.chemcraftprog.com (accessed on 2 February 2020).
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
Ligand | p q r | log βpqr | Complex | p q r | log βpqr |
---|---|---|---|---|---|
GLH | 0 1 1 0 1 2 0 1 3 | 8.21 15.10 17.88 | Cu-GLH | 1 1 1 1 1 −1 1 1 −2 | 12.71 2.77 −2.24 |
Sar-LH | 0 1 1 0 1 2 0 1 3 | 8.45 15.32 18.05 | Cu-Sar-LH | 1 1 1 1 1 0 1 1 −2 | 12.37 7.38 −2.70 |
GFH | 0 1 1 0 1 2 0 1 3 | 7.95 14.82 17.65 | Cu-GFH | 1 1 1 1 1 −2 | 12.76 −1.03 |
Sar-FH | 0 1 1 0 1 2 0 1 3 | 8.22 15.09 17.96 | Cu-Sar-FH | 1 1 1 1 1 −2 | 12.66 −1.51 |
Complex | λmax (nm) | ε (dm3 mol−1 cm−1) |
---|---|---|
Cu-GLH | 518 | 88 |
Cu-Sar-LH | 523 | 105 |
Cu-GFH | 517 | 85 |
Cu-Sar-FH | 521 | 98 |
Complex | giso (3) | aiso (3) | g|| (4) | A|| (4) | g⊥ (7) | A⊥ (7) | aisoN(1) | A⊥N (1) | A||N (1) |
---|---|---|---|---|---|---|---|---|---|
Cu-GLH | 2.092 | 86 | 2.174 | 210 | 2.046 | 23 | 14 | - | 15 |
Cu-Sar-LH | 2.094 | 88 | 2.171 | 211 | 2.046 | 24 | 14 | - | 15 |
Cu-GFH | 2.091 | 84 | 2.175 | 208 | 2.040 | 27 | 14 | 11 | 16 |
Cu-Sar-FH | 2.091 | 86 | 2.172 | 208 | 2.040 | 28 | 14 | - | 15 |
Complex | m/z | Assignment |
---|---|---|
Cu-Sar-LH | 340.10 | (LH + H)1+ |
355.08 | (MLH-2-carboxyl group)1+ | |
362.08 | (LH + Na)1+ | |
378.11 | (LH + K)1+ | |
401.00 | (MLH-2+ 2H)1+ | |
402.05 | (MILH-2 + 3H)1+ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicatos, G.M.; Hammouda, A.N.; Alnajjar, R.; Bonomo, R.P.; Valora, G.; Bourne, S.A.; Jackson, G.E. Aqueous Solution Equilibria and Spectral Features of Copper Complexes with Tripeptides Containing Glycine or Sarcosine and Leucine or Phenylalanine. Inorganics 2022, 10, 8. https://doi.org/10.3390/inorganics10010008
Vicatos GM, Hammouda AN, Alnajjar R, Bonomo RP, Valora G, Bourne SA, Jackson GE. Aqueous Solution Equilibria and Spectral Features of Copper Complexes with Tripeptides Containing Glycine or Sarcosine and Leucine or Phenylalanine. Inorganics. 2022; 10(1):8. https://doi.org/10.3390/inorganics10010008
Chicago/Turabian StyleVicatos, Giselle M., Ahmed N. Hammouda, Radwan Alnajjar, Raffaele P. Bonomo, Gabriele Valora, Susan A. Bourne, and Graham E. Jackson. 2022. "Aqueous Solution Equilibria and Spectral Features of Copper Complexes with Tripeptides Containing Glycine or Sarcosine and Leucine or Phenylalanine" Inorganics 10, no. 1: 8. https://doi.org/10.3390/inorganics10010008
APA StyleVicatos, G. M., Hammouda, A. N., Alnajjar, R., Bonomo, R. P., Valora, G., Bourne, S. A., & Jackson, G. E. (2022). Aqueous Solution Equilibria and Spectral Features of Copper Complexes with Tripeptides Containing Glycine or Sarcosine and Leucine or Phenylalanine. Inorganics, 10(1), 8. https://doi.org/10.3390/inorganics10010008