Novel Fluoridoaluminates from Ammonothermal Synthesis: Two Modifications of K2AlF5 and the Elpasolite Rb2KAlF6
Abstract
:1. Introduction
2. Results
2.1. Crystal Structures
Potassium Pentafluoridoaluminates K2AlF5
2.2. Raman Spectroscopy
Potassium Dirubidium Hexafluoridoaluminate, Rb2KAlF6
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richter, T.M.M.; Niewa, R. Chemistry of Ammonothermal Synthesis. Inorganics 2014, 2, 29–78. [Google Scholar] [CrossRef] [Green Version]
- Meissner, E.; Niewa, R. Ammonothermal Synthesis and Crystal Growth of Nitrides: Chemistry and Technology; Meissner, E., Niewa, R., Eds.; Springer: Cham, Switzerland, 2021; ISBN 9783030563042. [Google Scholar]
- Peters, D. Ammonothermal synthesis of aluminum nitride. J. Cryst. Growth 1990, 104, 411–418. [Google Scholar] [CrossRef]
- Purdy, A.P. Ammonothermal Synthesis of Cubic Gallium Nitride. Chem. Mater. 1999, 11, 1648–1651. [Google Scholar] [CrossRef]
- Dwiliński, R.; Baranowski, J.M.; Kamińska, M.; Doradziński, R.; Garczyński, J.; Sierzputowski, L. On GaN Crystallization by Ammonothermal Method. Acta Phys. Pol. A 1996, 90, 763–766. [Google Scholar] [CrossRef]
- Hertrampf, J.; Becker, P.; Widenmeyer, M.; Weidenkaff, A.; Schlücker, E.; Niewa, R. Ammonothermal Crystal Growth of Indium Nitride. Cryst. Growth Des. 2018, 18, 2365–2369. [Google Scholar] [CrossRef]
- Häusler, J.; Schnick, W. Ammonothermal Synthesis of Nitrides: Recent Developments and Future Perspectives. Chem. Eur. J. 2018, 24, 11864–11879. [Google Scholar] [CrossRef]
- Bäucker, C.; Niewa, R. A New Modification of Rb[Al(NH2)4] and Condensation in Solid State. Crystals 2020, 10, 1018. [Google Scholar] [CrossRef]
- Bäucker, C.; Bauch, S.; Niewa, R. Synthesis and Characterization of the Amidomanganates Rb2[Mn(NH2)4] and Cs2[Mn(NH2)4]. Crystals 2021, 11, 676. [Google Scholar] [CrossRef]
- Becker, P.; Cekovski, T.B.; Niewa, R. Indium Ammoniates from Ammonothermal Synthesis: InAlF6(NH3)2, [In(NH3)6][AlF6], and [In2F(NH3)10]2[SiF6]5 ∙ 2 NH3. Crystals 2021, 11, 679. [Google Scholar] [CrossRef]
- Hertrampf, J.; Alt, N.S.A.; Schlücker, E.; Niewa, R. Three Solid Modifications of Ba[Ga(NH2)4]2: A Soluble Intermediate in Ammonothermal GaN Crystal Growth. Eur. J. Inorg. Chem. 2017, 2017, 902–909. [Google Scholar] [CrossRef]
- Xiang, H.W. Vapor Pressures, Critical Parameters, Boiling Points, and Triple Points of Ammonia and Trideuteroammonia. J. Phys. Chem. Ref. Data 2004, 33, 1005–1011. [Google Scholar] [CrossRef]
- de Kozak, A.; Gredin, P.; Pierrard, A.; Renaudin, J. The crystal structure of a new form of the dipotassium pentafluoroaluminate hydrate, K2AlF5 · H2O, and of its dehydrate, K2AlF5. J. Fluorine Chem. 1996, 77, 39–44. [Google Scholar] [CrossRef]
- Schneider, S.; Hoppe, R. Über neue Verbindungen Cs2NaMF6 und K2NaMF6 sowie über Cs2KMnF6. Z. Anorg. Allg. Chem. 1970, 376, 268–276. [Google Scholar] [CrossRef]
- Moras, L.R. Crystal structure of dipotassium sodium fluoroaluminate (elpasolite). J. Inorg. Nucl. Chem. 1974, 36, 3876–3878. [Google Scholar] [CrossRef]
- Graulich, J.; Drüeke, S.; Babel, D. Röntgenstrukturuntersuchungen an den polymorphen Elpasolithen K2LiAlF6 und Rb2LiGaF6. Z. Anorg. Allg. Chem. 1998, 624, 1460–1464. [Google Scholar] [CrossRef]
- Yakubovich, O.V.; Kiryukhina, G.V.; Dimitrova, O.V. Crystal structure of Rb-elpasolite Rb2NaAlF6. Crystallogr. Rep. 2013, 58, 412–415. [Google Scholar] [CrossRef]
- Zhang, S. Intermediates during the Formation of GaN under Ammonothermal Conditions. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2014. [Google Scholar]
- Ehrentraut, D.; Meissner, E.; Bockowski, M. Technology of Gallium Nitride Crystal Growth; Ehrentraut, D., Bockowski, M., Meissner, E., Eds.; Springer: Berlin, Germany, 2010; ISBN 9783642048302. [Google Scholar]
- Vlasse, M.; Matejka, G.; Tressaud, A.; Wanklyn, B.M. The crystal structure of K2FeF5. Acta Crystallogr. B 1977, 33, 3377–3380. [Google Scholar] [CrossRef] [Green Version]
- Le Bail, A.; Desert, A.; Fourquet, J.L. Reinvestigation of the structure of K2FeF5. J. Solid State Chem. 1990, 84, 408–412. [Google Scholar] [CrossRef]
- Ma, N.; You, J.; Lu, L.; Wang, J.; Wang, M.; Wan, S. Micro-structure studies of the molten binary K3AlF6–Al2O3 system by in situ high temperature Raman spectroscopy and theoretical simulation. Inorg. Chem. Front. 2018, 5, 1861–1868. [Google Scholar] [CrossRef]
- Parker, S.F.; Ramirez-Cuesta, A.J.; Daemen, L.L. The structure and vibrational spectroscopy of cryolite, Na3AlF6. RSC Adv. 2020, 10, 25856–25863. [Google Scholar] [CrossRef]
- Gilbert, B.; Materne, T. Reinvestigation of Molten Fluoroaluminate Raman Spectra: The Question of the Existence of AlF52- Ions. Appl. Spectrosc. AS 1990, 44, 299–305. [Google Scholar] [CrossRef]
- Daniel, P.; Bulou, A.; Rousseau, M.; Nouet, J.; Fourquet, J.L.; Leblanc, M.; Burriel, R. A study of the structural phase transitions in AlF3: X-ray powder diffraction, differential scanning calorimetry (DSC) and Raman scattering investigations of the lattice dynamics and phonon spectrum. J. Phys. Condens. Matter 1990, 2, 5663–5677. [Google Scholar] [CrossRef]
- Becker, P.; Cekovski, T.B.; Niewa, R. Two Intermediates in Ammonothermal InN Crystal Growth: [In(NH3)5Cl]Cl2 and InF2(NH2). Z. Anorg. Allg. Chem. 2021, in press. [Google Scholar] [CrossRef]
- Alt, N.S.A.; Meissner, E.; Schluecker, E. Development of a novel in situ monitoring technology for ammonothermal reactors. J. Cryst. Growth 2012, 350, 2–4. [Google Scholar] [CrossRef]
- Hertweck, B.; Schimmel, S.; Steigerwald, T.G.; Alt, N.S.A.; Wellmann, P.J.; Schluecker, E. Ceramic liner technology for ammonoacidic synthesis. J. Supercrit. Fluids 2015, 99, 76–87. [Google Scholar] [CrossRef]
- Hüttig, G.F. Apparat zur gleichzeitigen Druck- und Raummessung von Gasen. (Tensi-Eudiometer.). Z. Anorg. Allg. Chem. 1920, 114, 161–173. [Google Scholar] [CrossRef]
- Schimmel, S.; Tomida, D.; Ishiguro, T.; Honda, Y.; Chichibu, S.; Amano, H. Numerical Simulation of Ammonothermal Crystal Growth of GaN—Current State, Challenges, and Prospects. Crystals 2021, 11, 356. [Google Scholar] [CrossRef]
- Erlekampf, J.; Seebeck, J.; Savva, P.; Meissner, E.; Friedrich, J.; Alt, N.S.A.; Schlücker, E.; Frey, L. Numerical time-dependent 3D simulation of flow pattern and heat distribution in an ammonothermal system with various baffle shapes. J. Cryst. Growth 2014, 403, 96–104. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
Compound | K2AlF5-2 | K2AlF5-3 | Rb2KAlF6 |
---|---|---|---|
Crystal system | Orthorhombic | Orthorhombic | Cubic |
Space group | Pbcn | Pbcn | Fm m |
a/pm | 718.12(3) | 718.370(10) | 868.88(11) |
b/pm | 1265.94(5) | 1264.49(2) | - |
c/pm | 988.45(3) | 1971.18(4) | - |
Z | 8 | 16 | 4 |
Density (calculated)/g∙cm−3 | 2.959 | 2.970 | 3.554 |
Volume/106 pm3 | 898.60(6) | 1790.56(5) | 656.0(2) |
Index ranges hkl | –9 ≤ h ≤ 9 | –9 ≤ h ≤ 8 | –10 ≤ h ≤ 9 |
–16 ≤ k ≤ 16 | –16 ≤ k ≤ 16 | –10 ≤ k ≤ 10 | |
–12 ≤ l ≤ 11 | –25 ≤ l ≤ 25 | –11 ≤ l ≤ 11 | |
2θmax/° | 54.94 | 54.96 | 54.96 |
F(000) | 768 | 1536 | 640 |
T/K | 293(2) | 293(2) | 293(2) |
µ(Mo-Kα)/mm−1 | 2.30 | 2.31 | 15.73 |
Measured reflections/sym. independent | 14490/1034 | 27919/2061 | 1072/58 |
Rint/Rσ | 0.0857/0.0357 | 0.0557/0.0201 | 0.1148/0.0319 |
R1 with ∣Fo∣ > 4σ(Fo) | 0.0308 | 0.0219 | 0.0318 |
R1/wR2/GooF | 0.0517/0.0732/1.107 | 0.0287/0.0554/1.112 | 0.0392/0.0949/1.189 |
Largest peak/hole in the difference electron density map/106 pm−3 | 0.64/–0.43 | 0.31/–0.32 | 0.85/–0.41 |
Atom | Site | x/a | y/b | z/c | Ueq |
---|---|---|---|---|---|
Al | 8d | 0.1544(1) | 0.09746(6) | 0.40752(7) | 0.0148(2) |
F(1) | 8d | 0.0028(2) | 0.1963(1) | 0.4657(2) | 0.0237(4) |
F(2) | 8d | 0.2039(2) | 0.3988(1) | 0.0533(2) | 0.0248(4) |
F(3) | 8d | 0.2149(2) | 0.4889(1) | 0.3435(2) | 0.0242(4) |
F(4) | 8d | 0.2904(2) | 0.1911(1) | 0.3155(2) | 0.0234(4) |
F(5) | 4a | 0 | 0 | 0 | 0.0224(5) |
F(6) | 4c | 0 | 0.0811(2) | ¼ | 0.0215(5) |
K(1) | 4c | 0 | 0.32802(6) | ¼ | 0.0216(2) |
K(2) | 8d | 0.35685(9) | 0.11414(5) | 0.07843(6) | 0.0288(2) |
K(3) | 4c | ½ | 0.36182(6) | ¼ | 0.0238(2) |
Atom | Site | x/a | y/b | z/c | Ueq |
---|---|---|---|---|---|
Al(1) | 8d | 0.34006(6) | 0.00306(4) | 0.07804(2) | 0.01285(12) |
Al(2) | 8d | 0.15454(6) | 0.30892(4) | 0.32833(2) | 0.01289(12) |
F(1) | 8d | 0.00118(13) | 0.21130(8) | 0.14313(5) | 0.02101(22) |
F(2) | 8d | 0.00529(13) | 0.40872(8) | 0.37647(5) | 0.02002(22) |
F(3) | 4b | 0 | ½ | 0 | 0.01986(30) |
F(4) | 4c | 0 | 0.32874(11) | ¼ | 0.01899(29) |
F(5) | 8d | 0.28728(14) | 0.21407(8) | 0.28163(5) | 0.02057(22) |
F(6) | 8d | 0.27138(14) | 0.38826(7) | 0.04254(5) | 0.01934(21) |
F(7) | 8d | 0.47905(14) | 0.10612(8) | 0.10966(5) | 0.02259(23) |
F(8) | 8d | 0.30459(14) | 0.49862(8) | 0.15048(5) | 0.02174(23) |
F(9) | 8d | 0.19137(14) | 0.08868(8) | 0.03231(5) | 0.02165(23) |
F(10) | 8d | 0.28759(14) | 0.41739(8) | 0.29745(5) | 0.02110(22) |
F(11) | 8d | 0.29631(14) | 0.30022(8) | 0.40163(5) | 0.02154(22) |
K(1) | 4c | ½ | 0.04458(4) | ¼ | 0.02156(13) |
K(2) | 4c | 0 | 0.07646(4) | ¼ | 0.01799(13) |
K(3) | 8d | 0.15370(5) | 0.02462(3) | 0.41609(2) | 0.02395(11) |
K(4) | 8d | 0.36071(5) | 0.29171(3) | 0.16355(2) | 0.02299(11) |
K(5) | 8d | 0.01092(5) | 0.26658(3) | 0.49444(2) | 0.01940(11) |
Distance/pm | Distance/pm | Distance/pm | Distance/pm | ||||
---|---|---|---|---|---|---|---|
Al–F(1) | 175.5(2) | K(1)–F(2) | 259.4(2) | K(2)–F(4) | 258.3(2) | K(3)–F(4) | 271.2(2) |
Al–F(2) | 176.5(2) | K(1)–F(2) | 259.4(2) | K(2)–F(3) | 271.3(2) | K(3)–F(4) | 271.2(2) |
Al–F(3) | 178.1(2) | K(1)–F(1) | 270.6(2) | K(2)–F(2) | 277.2(2) | K(3)–F(3) | 276.3(2) |
Al–F(4) | 178.5(2) | K(1)–F(1) | 270.7(2) | K(2)–F(2) | 281.7(2) | K(3)–F(3) | 276.3(2) |
Al–F(5) | 189.37(7) | K(1)–F(3) | 271.7(2) | K(2)–F(1) | 281.8(2) | K(1)–F(6) | 277.6(2) |
Al–F(6) | 192.24(8) | K(1)–F(3) | 271.7(2) | K(2)–F(1) | 283.1(2) | K(3)–F(1) | 290.5(2) |
K(1)–F(4) | 278.8(2) | K(2)–F(4) | 291.0(2) | K(3)–F(1) | 290.5(2) | ||
K(1)–F(4) | 278.8(2) | K(2)–F(5) | 304.23(7) | K(3)–F(2) | 291.9(2) | ||
K(1)–F(6) | 312.6(2) | K(2)–F(6) | 310.13(7) | K(3)–F(2) | 291.9(2) | ||
K(2)–F(3) | 310.6(2) | K(3)–F(5) | 302.76(5) | ||||
K(2)–F(3) | 311.8(2) | K(3)–F(5) | 302.76(5) |
Distance/pm | Distance/pm | Distance/pm | Distance/pm | ||||
---|---|---|---|---|---|---|---|
Al(1)–F(7) | 175.60(11) | Al(2)–F(1) | 175.82(10) | K(1)–F(5) | 2 × 270.50(10) | K(2)–F(8) | 2 × 260.54(9) |
Al(1)–F(8) | 176.68(10) | Al(2)–F(11) | 177.12(10) | K(1)–F(4) | 1 × 272.93(15) | K(2)–F(10) | 2 × 269.24(10) |
Al(1)–F(9) | 176.79(10) | Al(2)–F(10) | 177.92(10) | K(1)–F(10) | 2 × 278.02(11) | K(2)–F(1) | 2 × 271.02(10) |
Al(1)–F(6) | 179.95(10) | Al(2)–F(5) | 178.75(10) | K(1)–F(7) | 2 × 287.76(10) | K(2)–F(5) | 2 × 277.05(11) |
Al(1)–F(2) | 190.68(10) | Al(2)–F(2) | 190.85(10) | K(1)–F(8) | 2 × 299.57(10) | K(2)–F(4) | 1 × 319.00(15) |
Al(1)–F(3) | 192.04(5) | Al(2)–F(4) | 191.82(5) | K(1)–F(2) | 2 × 302.77(10) | ||
K(3)–F(9) | 271.56(10) | K(4)–F(5) | 258.05(10) | K(5)–F(6) | 264.78(11) | ||
K(3)–F(10) | 273.60(10) | K(4)–F(8) | 265.97(10) | K(5)–F(6) | 267.91(10) | ||
K(3)–F(6) | 277.78(10) | K(4)–F(7) | 271.27(11) | K(5)–F(11) | 269.94(10) | ||
K(3)–F(9) | 279.92(11) | K(4)–F(6) | 275.55(10) | K(5)–F(9) | 272.95(10) | ||
K(3)–F(8) | 284.93(11) | K(4)–F(11) | 278.09(11) | K(5)–F(11) | 278.04(11) | ||
K(3)–F(1) | 285.88(11) | K(4)–F(1) | 280.47(11) | K(5)–F(7) | 278.49(11) | ||
K(3)–F(11) | 287.44(11) | K(4)–F(5) | 291.99(11) | K(5)–F(1) | 280.16(10) | ||
K(3)–F(7) | 287.75(11) | K(4)–F(10) | 308.22(11) | K(5)–F(9) | 291.23(11) | ||
K(3)–F(2) | 295.96(10) | K(4)–F(2) | 311.84(10) | K(5)–F(2) | 293.93(10) | ||
K(3)–F(3) | 300.36(4) | K(4)–F(10) | 312.53(11) | K(5)–F(3) | 295.47(4) | ||
K(3)–F(6) | 334.39(11) | K(4)–F(4) | 313.65(4) |
Atom | Site | x/a | y/b | z/c | Ueq |
---|---|---|---|---|---|
Al | 4a | 0 | 0 | 0 | 0.0166(17) |
K | 4b | ½ | 0 | 0 | 0.0224(14) |
Rb | 8c | ¼ | ¼ | ¼ | 0.0310(8) |
F | 24e | 0 | 0.2073(8) | 0 | 0.0386(18) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bäucker, C.; Becker, P.; Morell, K.J.; Niewa, R. Novel Fluoridoaluminates from Ammonothermal Synthesis: Two Modifications of K2AlF5 and the Elpasolite Rb2KAlF6. Inorganics 2022, 10, 7. https://doi.org/10.3390/inorganics10010007
Bäucker C, Becker P, Morell KJ, Niewa R. Novel Fluoridoaluminates from Ammonothermal Synthesis: Two Modifications of K2AlF5 and the Elpasolite Rb2KAlF6. Inorganics. 2022; 10(1):7. https://doi.org/10.3390/inorganics10010007
Chicago/Turabian StyleBäucker, Christian, Peter Becker, Keshia J. Morell, and Rainer Niewa. 2022. "Novel Fluoridoaluminates from Ammonothermal Synthesis: Two Modifications of K2AlF5 and the Elpasolite Rb2KAlF6" Inorganics 10, no. 1: 7. https://doi.org/10.3390/inorganics10010007
APA StyleBäucker, C., Becker, P., Morell, K. J., & Niewa, R. (2022). Novel Fluoridoaluminates from Ammonothermal Synthesis: Two Modifications of K2AlF5 and the Elpasolite Rb2KAlF6. Inorganics, 10(1), 7. https://doi.org/10.3390/inorganics10010007