Technoeconomic Analysis of Dye Sensitized Solar Cells (DSSCs) with WS2/Carbon Composite as Counter Electrode Material
Abstract
:1. Introduction
Performance of DSSC with WS2/Carbon Composite Counter Electrode
2. Results and Discussion
2.1. Manufacturing Cost
2.2. Levelized Cost of Energy
3. Methodology
3.1. DSSC Module Cost
3.1.1. Reference Module Assumptions
3.1.2. Manufacturing Processes
3.2. Levelized Cost of Energy Calculation (LCOE)
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Ganesan, S.; Muthuraaman, B.; Mathew, V.; Madhavan, J.; Maruthamuthu, P.; Suthanthiraraj, S.A. Performance of a new polymer electrolyte incorporated with diphenylamine in nanocrystalline dye-sensitized solar cell. Sol. Energy Mater. Sol. Cells 2008, 92, 1718–1722. [Google Scholar] [CrossRef]
- Ragoussi, M.E.; Ince, M.; Torres, T. Recent advances in phthalocyanine-based sensitizers for dye-sensitized solar cells. Eur. J. Org. Chem. 2013, 2013, 6475–6489. [Google Scholar] [CrossRef]
- Zhang, Z.; Yates, J.T., Jr. Direct observation of surface-mediated electron−hole pair recombination in TiO2 (110). J. Phys. Chem. C 2010, 114, 3098–3101. [Google Scholar] [CrossRef]
- Raghavan, N.; Thangavel, S.; Venugopal, G. Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites. Mater. Sci. Semicond. Process. 2015, 30, 321–329. [Google Scholar] [CrossRef]
- Venkatraman, V.; Raju, R.; Oikonomopoulos, S.P.; Alsberg, B. The dye-sensitized solar cell database. J. Cheminformatics 2018, 10, 18. [Google Scholar] [CrossRef]
- Toyoda, T.; Sano, T.; Nakajima, J.; Doi, S.; Fukumoto, S.; Ito, A.; Tohyama, T.; Yoshida, M.; Kanagawa, T.; Motohiro, T.; et al. Outdoor performance of large-scale DSC modules. J. Photochem. Photobiol. A Chem. 2004, 164, 203–207. [Google Scholar] [CrossRef]
- Desilvestro, H.; Bertoz, M.; Tulloch, S.; Tulloch, G. Packaging, Scale-Up and Commercialization of Dye Solar Cells; EPFL Press: Lausanne, Switzerland, 2010. [Google Scholar]
- Muñoz-García, A.B.; Benesperi, I.; Boschloo, G.; Concepcion, J.J.; Delcamp, J.H.; Gibson, E.A.; Meyer, G.J.; Pavone, M.; Pettersson, H.; Hagfeldt, A.; et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 2021, 50, 12450–12550. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, V.; Sharma, S.S. Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett. 2018, 13, 381. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Bai, Y.; Chen, Z.; Jiang, Q.; Li, T.; Zhang, W. Dye-sensitized solar cells based on low-cost carbon-coated tungsten disulphide counter electrodes. Electrochim. Acta 2013, 114, 30–34. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Yang, B.-H.; Lin, J.-Y. One-and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells. Carbon 2011, 49, 3092–3097. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, M.; Liu, L.; Sofianos, M.V.; Yang, H.; Wang, S.; Liu, S. Carbon-coated three-dimensional WS2 film consisting of WO3@ WS2 core-shell blocks and layered WS2 nanostructures as counter electrodes for efficient dye-sensitized solar cells. Electrochim. Acta 2018, 266, 130–138. [Google Scholar] [CrossRef]
- Song, Z.; McElvany, C.L.; Phillips, A.B.; Celik, I.; Krantz, P.W.; Watthage, S.C.; Liyanage, G.K.; Apul, D.; Heben, M.J. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 2017, 10, 1297–1305. [Google Scholar] [CrossRef]
- Horowitz, K.A.; Fu, R.; Woodhouse, M. An analysis of glass–glass CIGS manufacturing costs. Sol. Energy Mater. Sol. Cells 2016, 154, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Silverman, T.; Deceglie, M.; Horowitz, K. NREL Comparative PV LCOE Calculator. Available online: http://pvlcoe.nrel.gov (accessed on 1 June 2021).
- Powell, D.M.; Fu, R.; Horowitz, K.; Basore, P.A.; Woodhouse, M.; Buonassisi, T. The capital intensity of photovoltaics manufacturing: Barrier to scale and opportunity for innovation. Energy Environ. Sci. 2015, 8, 3395–3408. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, A.C.; Powell, D.M.; James, T.L.; Woodhouse, M.; Buonassisi, T. Assessing the drivers of regional trends in solar photovoltaic manufacturing. Energy Environ. Sci. 2013, 6, 2811–2821. [Google Scholar] [CrossRef] [Green Version]
- Powell, D.M.; Winkler, M.T.; Choi, H.J.; Simmons, C.B.; Needleman, D.B.; Buonassisi, T. Crystalline silicon photovoltaics: A cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ. Sci. 2012, 5, 5874–5883. [Google Scholar] [CrossRef]
- Mulligan, C.J.; Bilen, C.; Zhou, X.; Belcher, W.J.; Dastoor, P.C. Levelised cost of electricity for organic photovoltaics. Sol. Energy Mater. Sol. Cells 2015, 133, 26–31. [Google Scholar] [CrossRef]
- Song, Z.; Abate, A.; Watthage, S.C.; Liyanage, G.K.; Phillips, A.B.; Steiner, U.; Graetzel, M.; Heben, M.J. Perovskite solar cell stability in humid air: Partially reversible phase transitions in the PbI2-CH3NH3I-H2O system. Adv. Energy Mater. 2016, 6, 1600846. [Google Scholar] [CrossRef]
- Woodhouse, M.; Goodrich, A.; Redlinger, M.; Lokanc, M.; Eggert, R. The Present, Mid-Term, and Long-Term Supply Curves for Tellurium; and Updates in the Results from NREL’s CdTe PV Module Manufacturing Cost Model (Presentation); No. NREL/PR-6A20-60430; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2013. [Google Scholar]
- Fthenakis, V.M.; Moskowitz, P.D. Photovoltaics: Environmental, health and safety issues and perspectives. Prog. Photovolt. Res. Appl. 2000, 8, 27–38. [Google Scholar] [CrossRef]
- Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 2016, 15, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Sastrawan, R.; Beier, J.; Belledin, U.; Hemming, S.; Hinsch, A.; Kern, R.; Vetter, C.; Petrat, F.M.; Prodi-Schwab, A.; Lechner, P.; et al. New interdigital design for large area dye solar modules using a lead-free glass frit sealing. Prog. Photovolt. Res. Appl. 2006, 14, 697–709. [Google Scholar] [CrossRef]
- Tulloch, G.E. Light and energy—Dye solar cells for the 21st century. J. Photochem. Photobiol. A Chem. 2004, 164, 209–219. [Google Scholar] [CrossRef]
- Zamanpour, F.; Behrouznejad, F.; Ghavaminia, E.; Khosroshahi, R.; Zhan, Y.; Taghavinia, N. Fast Light-Cured TiO2 Layers for Low-Cost Carbon-Based Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 7800–7810. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Splivallo, R.; Liska, P.; Comte, P.; Grätzel, M. A swift dye uptake procedure for dye sensitized solar cells. Chem. Commun. 2003, 12, 1456–1457. [Google Scholar] [CrossRef]
- Vesce, L.; Guidobaldi, A.; Mariani, P.; di Carlo, A.; Parisi, M.L.; Maranghi, S.; Baso, R. Scaling-up of Dye Sensitized Solar Modules. In World Scientific Reference of Hybrid Materials; World Scientific: Singapore, 2019; pp. 423–485. [Google Scholar]
- Ramasamy, E.; Lee, W.J.; Lee, D.Y.; Song, J.S. Portable, parallel grid dye-sensitized solar cell module prepared by screen printing. J. Power Sources 2007, 165, 446–449. [Google Scholar] [CrossRef]
- Dai, S.; Wang, K.; Weng, J.; Sui, Y.; Huang, Y.; Xiao, S.; Chen, S.; Hu, L.; Kong, F.; Pan, X.; et al. Design of DSC panel with efficiency more than 6%. Sol. Energy Mater. Sol. Cells 2005, 85, 447–455. [Google Scholar] [CrossRef]
- Takeda, Y.; Kato, N.; Higuchi, K.; Takeichi, A.; Motohiro, T.; Fukumoto, S.; Sano, T.; Toyoda, T. Monolithically series-interconnected transparent modules of dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 808–811. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, H.; Li, J.B.; Li, X.; Zhao, X.C. DSCs Modules Fabricated by Screen Printing. Key Eng. Mater. 2010, 434–435, 638–641. [Google Scholar] [CrossRef]
- Fukui, A.; Fuke, N.; Komiya, R.; Koide, N.; Yamanaka, R.; Katayama, H.; Han, L. Dye-Sensitized Photovoltaic Module with Conversion Efficiency of 8.4%. Appl. Phys. Express 2009, 2, 082202. [Google Scholar] [CrossRef]
- Giordano, F.; Guidobaldi, A.; Petrolati, E.; Vesce, L.; Riccitelli, R.; Reale, A.; Brown, T.M.; di Carlo, A. Realization of high performance large area Z-series-interconnected opaque dye solar cell modules. Prog. Photovolt. Res. Appl. 2013, 21, 1653–1658. [Google Scholar] [CrossRef]
- Iftikhar, H.; Sonai, G.G.; Hashmi, S.G.; Nogueira, A.F.; Lund, P.D. Progress on Electrolytes Development in Dye-Sensitized Solar Cells. Materials 2019, 12, 1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vesce, L.; Riccitelli, R.; Soscia, G.; Brown, T.M.; di Carlo, A.; Reale, A. Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: Study and experimentation of TiCl4 treatment. J. Non-Cryst. Solids 2010, 356, 1958–1961. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, C.; Cuevas, A.; De Wolf, S. High-efficiency crystalline silicon solar cells: Status and perspectives. Energy Environ. Sci. 2016, 9, 1552–1576. [Google Scholar] [CrossRef] [Green Version]
- Harikisun, R.; Desilvestro, H. Long-term stability of dye solar cells. Sol. Energy 2011, 85, 1179–1188. [Google Scholar] [CrossRef]
- Kato, N.; Higuchi, K.; Tanaka, H.; Nakajima, J.; Sano, T.; Toyoda, T. Improvement in long-term stability of dye-sensitized solar cell for outdoor use. Sol. Energy Mater. Sol. Cells 2011, 95, 301–305. [Google Scholar] [CrossRef]
Component | Raw Material | Price (USD/kg) | Weight (g/m2) | Material Cost (USD/m2) |
---|---|---|---|---|
Glass | 3 mm Glass | 0.8–1.1 | 7500 | 7.0000 |
FTO | FTO | 550–900 | 1.790 | 1.2980 |
Counter Electrode | AC | 0.60–5.50 | 40 | 0.0240 |
Counter Electrode | WS2 | 10–50 | 20 | 0.2000 |
Photo Electrode | TiO2 | 2–4 | 16 | 0.0320 |
Photo Electrode | N719 C58H86N8O8RuS2 | 2–5 | 4 | 0.0080 |
Electrolyte | Iodine | 20–50 | 0.45 | 0.0090 |
Electrolyte | Lithium iodide | 12–20 | 0.15 | 0.0017 |
Electrolyte | 4-tert-Butylpyridine C9H13N | 7–8 | 1.68 | 0.0118 |
Electrolyte | C8H15IN2 | 29–80 | 7.10 | 0.2058 |
Electrolyte | CH5N3CHNS | 10–30 | 0.26 | 0.0026 |
Electrolyte | C5H9N | 10–25 | 5.3 | 0.053 |
Electrolyte | CH3CN | 5–10 | 29.65 | 0.1482 |
Junction Box | - | - | - | 7.500 |
Equipment | Footprint (m × m) | Unit Price (USDk) | Power (kW) | Operating Time (min/Module) |
---|---|---|---|---|
Glass cutter machine | 2.9 × 1.8 | 2–9 | 3 | 2 |
FTO sputtering | 10 × 2.5 | 1000–3000 | 500 | 30 |
Screen Printing | 6 × 2.5 | 20–80 | 10 | 3 |
Furnace | 6 × 2.5 | 150–360 | 30 | 60 |
Dye adsorption | 6 × 2.5 | 20–80 | 25 | 20 |
Electrolyte injection and sealing | 2 × 1 | 20–60 | 1.5 | 10 |
Soldering system | 2.5 × 5 | 120–140 | 10 | 2 |
Testing table | 2.5 × 1 | 10–15 | 0.5 | 1 |
Process | Utilities (USD/m2) | Labor (USD/m2) | Depreciation (USD/m2) | Maintenance (USD/m2) |
---|---|---|---|---|
Front Glass | 0.259 | 0.231 | 0.158 | 0.011 |
Sputter FTO | 0.394 | 0.116 | 0.900 | 0.232 |
Print TiO2 | 0.066 | 0.270 | 0.203 | 0.023 |
Dye | 0.062 | 0.502 | 0.236 | 0.032 |
AC coating | 0.058 | 0.077 | 0.223 | 0.023 |
WS2 coating | 0.058 | 0.077 | 0.223 | 0.023 |
Electrolyte injection | 0.008 | 0.009 | 0.191 | 0.019 |
Sealing | 0.002 | 0.019 | 0.181 | 0.017 |
Back Glass | 0.259 | 0.231 | 0.158 | 0.011 |
Junction-box | 0.002 | 0.019 | 0.158 | 0.010 |
Testing | 0.000 | 0.008 | 0.163 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed, T.H.; Wei, W. Technoeconomic Analysis of Dye Sensitized Solar Cells (DSSCs) with WS2/Carbon Composite as Counter Electrode Material. Inorganics 2022, 10, 191. https://doi.org/10.3390/inorganics10110191
Syed TH, Wei W. Technoeconomic Analysis of Dye Sensitized Solar Cells (DSSCs) with WS2/Carbon Composite as Counter Electrode Material. Inorganics. 2022; 10(11):191. https://doi.org/10.3390/inorganics10110191
Chicago/Turabian StyleSyed, Tajamul Hussain, and Wei Wei. 2022. "Technoeconomic Analysis of Dye Sensitized Solar Cells (DSSCs) with WS2/Carbon Composite as Counter Electrode Material" Inorganics 10, no. 11: 191. https://doi.org/10.3390/inorganics10110191
APA StyleSyed, T. H., & Wei, W. (2022). Technoeconomic Analysis of Dye Sensitized Solar Cells (DSSCs) with WS2/Carbon Composite as Counter Electrode Material. Inorganics, 10(11), 191. https://doi.org/10.3390/inorganics10110191