Electrodeposited PPy@TiO2 and PEDOT@TiO2 Counter Electrodes for [Co(bpy)3]2+/3+ Redox Mediator-Based Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Analysis of the Electrodeposited CEs
2.2. Electrochemical Analysis
3. Materials and Methods
3.1. Materials and Methods
3.2. Working Electrodes and DSSCs
3.3. Preparation of PPy@TiO2 and PEDOT@TiO2 Counter Electrodes
3.4. Characterization and Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef] [PubMed]
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M.K.; Liska, P.; Péchy, P.; Grätzel, M. Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovolt. Res. Appl. 2007, 15, 603–612. [Google Scholar] [CrossRef]
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Yang, X.; Wang, W.; Gurzadyan, G.G.; Li, J.; Li, X.; An, J.; Yu, Z.; Wang, H.; Cai, B.; et al. 13.6% Efficient Organic Dye-Sensitized Solar Cells by Minimizing Energy Losses of the Excited State. ACS Energy Lett. 2019, 4, 943–951. [Google Scholar] [CrossRef]
- Murakami, T.N.; Grätzel, M. Counter electrodes for DSC: Application of functional materials as catalysts. Inorg. Chim. Acta 2008, 361, 572–580. [Google Scholar] [CrossRef]
- Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y. Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 2017, 46, 5975–6023. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.; Deepak, T.G.; Anjusree, G.S.; Arun, T.A.; Nair, S.V.; Nair, A.S. A review on counter electrode materials in dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 4474–4490. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (version 47). Prog. Photovolt. Res. Appl. 2016, 24, 3–11. [Google Scholar] [CrossRef]
- Thogiti, S.; Park, J.Y.; Thanh Thuy, C.T.; Lee, D.K.; Min, B.-K.; Yun, H.J.; Kim, J.H. High-Performance Dye-Sensitized Solar Cells through Graded Electron Transport in Band-Engineered W-TiO2 Cascade Layer. ACS Sustain. Chem. Eng. 2018, 6, 13025–13034. [Google Scholar] [CrossRef]
- Gurulakshmi, M.; Meenakshamma, A.; Susmitha, K.; Venkata Subbaiah, Y.P.; Mitty, R. Enhanced Performance of Dye-Sensitized Solar Cells (DSSCs) Based on MoS2/Single-Walled Carbon Nanohorns Electrochemically Deposited on Bilayer Counter Electrodes. Chem. Plus Chem. 2020, 85, 2599–2605. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Grätzel, C.; Zakeeruddin, S.M.; Grätzel, M. Recent developments in redox electrolytes for dye-sensitized solar cells. Energy Environ. Sci. 2012, 5, 9394–9405. [Google Scholar] [CrossRef]
- Spokoyny, A.M.; Li, T.C.; Farha, O.K.; Machan, C.W.; She, C.; Stern, C.L.; Marks, T.J.; Hupp, J.T.; Mirkin, C.A. Electronic Tuning of Nickel-Based Bis(dicarbollide) Redox Shuttles in Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2010, 49, 5339–5343. [Google Scholar] [CrossRef] [PubMed]
- Saygili, Y.; Söderberg, M.; Pellet, N.; Giordano, F.; Cao, Y.; Muñoz-García, A.B.; Zakeeruddin, S.M.; Vlachopoulos, N.; Pavone, M.; Boschloo, G.; et al. Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage. J. Am. Chem. Soc. 2016, 138, 15087–15096. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Chamberland, N.; Breau, L.; Moser, J.E.; Humphry-Baker, R.; Marsan, B.; Zakeeruddin, S.M.; Grätzel, M. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2010, 2, 385–389. [Google Scholar] [CrossRef] [Green Version]
- Daeneke, T.; Kwon, T.H.; Holmes, A.B.; Duffy, N.W.; Bach, U.; Spiccia, L. High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nat. Chem. 2011, 3, 211–215. [Google Scholar] [CrossRef]
- Bella, F.; Galliano, S.; Gerbaldi, C.; Viscardi, G. Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices. Energies 2016, 9, 384. [Google Scholar] [CrossRef] [Green Version]
- Nusbaumer, H.; Moser, J.-E.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Grätzel, M. CoII(dbbip)22+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells. J. Phys. Chem. B 2001, 105, 10461–10464. [Google Scholar] [CrossRef]
- Klahr, B.M.; Hamann, T.W. Performance Enhancement and Limitations of Cobalt Bipyridyl Redox Shuttles in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2009, 113, 14040–14045. [Google Scholar] [CrossRef]
- Tsao, H.N.; Yi, C.; Moehl, T.; Yum, J.H.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Grätzel, M. Cyclopentadithiophene bridged donor-acceptor dyes achieve high power conversion efficiencies in dye-sensitized solar cells based on the tris-cobalt bipyridine redox couple. Chem. Sus. Chem. 2011, 4, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Sapp, S.A.; Elliott, C.M.; Contado, C.; Caramori, S.; Bignozzi, C.A. Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2002, 124, 11215–11222. [Google Scholar] [CrossRef] [PubMed]
- Feldt, S.M.; Gibson, E.A.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeldt, A. Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2010, 132, 16714–16724. [Google Scholar] [CrossRef] [PubMed]
- Yella, A.; Lee, H.W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.; Yeh, C.Y.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629–634. [Google Scholar] [CrossRef]
- Baptayev, B.; Mustazheb, D.; Balanay, M.P. Binary transition metal sulfides as an economical Pt-free counter electrodes for dye-sensitized solar cells. Mater. Today Proc. 2020, 25, 24–27. [Google Scholar] [CrossRef]
- Hattori, S.; Wada, Y.; Yanagida, S.; Fukuzumi, S. Blue Copper Model Complexes with Distorted Tetragonal Geometry Acting as Effective Electron-Transfer Mediators in Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2005, 127, 9648–9654. [Google Scholar] [CrossRef]
- He, J.; Pringle, J.M.; Cheng, Y.-B. Titanium Carbide and Titanium Nitride-Based Nanocomposites as Efficient Catalysts for the Co2+/Co3+ Redox Couple in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2014, 118, 16818–16824. [Google Scholar] [CrossRef]
- Carli, S.; Busatto, E.; Caramori, S.; Boaretto, R.; Argazzi, R.; Timpson, C.J.; Bignozzi, C.A. Comparative Evaluation of Catalytic Counter Electrodes for Co(III)/(II) Electron Shuttles in Regenerative Photoelectrochemical Cells. J. Phys. Chem. C 2013, 117, 5142–5153. [Google Scholar] [CrossRef]
- Lu, S.; Yang, H.; Li, F.; Wang, Y.; Chen, S.; Yang, G.; Liu, Y.; Zhang, X. Element substitution of kesterite Cu2ZnSnS4 for efficient counter electrode of dye-sensitized solar cells. Sci. Rep. 2018, 8, 8714. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-J.; Chen, H.-T.; Ann, S.-B.; Li, C.-T.; Lin, J.T.; Lee, C.-P.; Ho, K.-C. Hierarchical urchin-like CoSe2/CoSeO3 electro-catalysts for dye-sensitized solar cells: Up to 19% PCE under dim light illumination. J. Mater. Chem. A 2019, 7, 26089–26097. [Google Scholar] [CrossRef]
- Pang, B.; Zhang, M.; Zhou, C.; Dong, H.; Ma, S.; Shi, Y.; Sun, Q.; Li, F.; Yu, L.; Dong, L. Nitrogen-Doped Carbon Nano-Onions Decorated on Graphene Network: A Novel All-Carbon Composite Counter Electrode for Dye-Sensitized Solar Cell with a 10.28% Power Conversion Efficiency. Sol. RRL 2020, 4, 2000263. [Google Scholar] [CrossRef]
- Ahmed, A.S.A.; Xiang, W.; Abdelmotalleib, M.; Zhao, X. Efficient NiO Impregnated Walnut Shell-Derived Carbon for Dye-Sensitized Solar Cells. ACS Appl. Electron. Mater. 2022, 4, 1063–1071. [Google Scholar] [CrossRef]
- Ahmed, A.S.A.; Xiang, W.; Gu, A.; Hu, X.; Saana, I.A.; Zhao, X. Carbon black/silicon nitride nanocomposites as high-efficiency counter electrodes for dye-sensitized solar cells. New J. Chem. 2018, 42, 11715–11723. [Google Scholar] [CrossRef]
- Abdelaal, S.A.A.; Wanchun, X.; Fatma, S.M.H.; Xiujian, Z. Screen-printed carbon black/SiO2 composite counter electrodes for dye-sensitized solar cells. Sol. Energy 2021, 230, 902–911. [Google Scholar] [CrossRef]
- Marchini, E.; Orlandi, M.; Bazzanella, N.; Boaretto, R.; Cristino, V.; Miotello, A.; Caramori, S.; Carli, S. Electrodeposited PEDOT/Nafion as Catalytic Counter Electrodes for Cobalt and Copper Bipyridyl Redox Mediators in Dye-Sensitized Solar Cells. ACS Omega 2022, 7, 29181–29194. [Google Scholar] [CrossRef] [PubMed]
- Kavan, L.; Yum, J.H.; Grätzel, M. Graphene nanoplatelets outperforming platinum as the electrocatalyst in co-bipyridine-mediated dye-sensitized solar cells. Nano Lett. 2011, 11, 5501–5506. [Google Scholar] [CrossRef] [PubMed]
- Ju, M.J.; Kim, J.C.; Choi, H.-J.; Choi, I.T.; Kim, S.G.; Lim, K.; Ko, J.; Lee, J.-J.; Jeon, I.-Y.; Baek, J.-B.; et al. N-Doped Graphene Nanoplatelets as Superior Metal-Free Counter Electrodes for Organic Dye-Sensitized Solar Cells. ACS Nano 2013, 7, 5243–5250. [Google Scholar] [CrossRef]
- Liu, I.P.; Hou, Y.-C.; Li, C.-W.; Lee, Y.-L. Highly electrocatalytic counter electrodes based on carbon black for cobalt(iii)/(ii)-mediated dye-sensitized solar cells. J. Mater. Chem. A 2017, 5, 240–249. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Q.; Wang, H.; Zhou, G.; Wang, Z.-S. Reduced graphene oxide–Ta3N5 composite: A potential cathode for efficient Co(bpy)33+/2+ mediated dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 6342–6349. [Google Scholar] [CrossRef]
- Marchini, E.; Caramori, S.; Bignozzi, C.A.; Carli, S. On the Use of PEDOT as a Catalytic Counter Electrode Material in Dye-Sensitized Solar Cells. Appl. Sci. 2021, 11, 3795. [Google Scholar] [CrossRef]
- Park, B.-w.; Pazoki, M.; Aitola, K.; Jeong, S.; Johansson, E.M.J.; Hagfeldt, A.; Boschloo, G. Understanding Interfacial Charge Transfer between Metallic PEDOT Counter Electrodes and a Cobalt Redox Shuttle in Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 2074–2079. [Google Scholar] [CrossRef] [PubMed]
- Reinmuth, W.H. Theory of Stationary Electrode Polarography. Anal. Chem. 1961, 33, 1793–1794. [Google Scholar] [CrossRef]
- Peng, S.; Tian, L.; Liang, J.; Mhaisalkar, S.G.; Ramakrishna, S. Polypyrrole nanorod networks/carbon nanoparticles composite counter electrodes for high-efficiency dye-sensitized solar cells. ACS Appl. Mater Interfaces 2012, 4, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Lin, X.; Wang, Y.; Wang, L.; Guo, W.; Qi, D.; Peng, X.; Hagfeldt, A.; Grätzel, M.; Ma, T. Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2012, 134, 3419–3428. [Google Scholar] [CrossRef]
- Huang, S.; He, Q.; Chen, W.; Zai, J.; Qiao, Q.; Qian, X. 3D hierarchical FeSe2 microspheres: Controlled synthesis and applications in dye-sensitized solar cells. Nano Energy 2015, 15, 205–215. [Google Scholar] [CrossRef]
- Afshari, M.; Dinari, M.; Momeni, M.M. Ultrasonic irradiation preparation of graphitic-C3N4/polyaniline nanocomposites as counter electrodes for dye-sensitized solar cells. Ultrason. Sonochem. 2018, 42, 631–639. [Google Scholar] [CrossRef]
- He, Q.; Huang, S.; Wang, C.; Qiao, Q.; Liang, N.; Xu, M.; Chen, W.; Zai, J.; Qian, X. The role of Mott-Schottky heterojunctions in Ag-Ag8SnS6 as counter electrodes in dye-sensitized solar cells. ChemSusChem 2015, 8, 817–820. [Google Scholar] [CrossRef]
- He, B.; Tang, Q.; Wang, M.; Chen, H.; Yuan, S. Robust Polyaniline–Graphene Complex Counter Electrodes For Efficient Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 8230–8236. [Google Scholar] [CrossRef]
- Kavan, L.; Yum, J.H.; Graetzel, M. Optically transparent cathode for Co(III/II) mediated dye-sensitized solar cells based on graphene oxide. ACS Appl. Mater. Interfaces 2012, 4, 6999–7006. [Google Scholar] [CrossRef]
- Wu, M.; Wang, Y.; Lin, X.; Guo, W.; Wu, K.; Lin, Y.-N.; Guo, H.; Ma, T. TiC/Pt composite catalyst as counter electrode for dye-sensitized solar cells with long-term stability and high efficiency. J. Mater. Chem. A 2013, 1, 9672–9679. [Google Scholar] [CrossRef]
- Huang, S.; Zai, J.; Ma, D.; Hu, Z.; He, Q.; Wu, M.; Chen, D.; Chen, Z.; Qian, X. Improving the catalytic performance of Ni3S4-PtCo heteronanorods via Mott-Schottky effect toward the reduction of iodine couples in dye-sensitized solar cells. Electrochim. Acta 2017, 241, 89–97. [Google Scholar] [CrossRef]
- Aftabuzzaman, M.; Sarker, S.; Lu, C.; Kim, H.K. In-depth understanding of the energy loss and efficiency limit of dye-sensitized solar cells under outdoor and indoor conditions. J. Mater. Chem. A 2021, 9, 24830–24848. [Google Scholar] [CrossRef]
- Ahmed, A.S.A.; Xiang, W.; Shui, F.; Li, B.; Younes, H.H.A.; Amiinu, I.S.; Zhao, X. MoS2/ZIF-8 derived nitrogen doped carbon (NC)-PEDOT: PSS as optically transparent counter electrode for dye-sensitized solar cells. Sol. Energy 2021, 218, 117–128. [Google Scholar] [CrossRef]
CEs | JPC (mA cm−2) | ∆EPP (mV) | Log Jo (mA cm−2) | Log Jlim (mA cm−2) | Dn (cm−2 S−1) |
---|---|---|---|---|---|
Pt | −0.559 | 0.319 | −0.117 | 0.435 | 5.88 × 10−7 |
PPy | −0.482 | 0.251 | −0.283 | 0.334 | 4.74 × 10−7 |
PPy@TiO2 layer | −0.665 | 0.291 | 0.275 | 0.492 | 6.72 × 10−7 |
PEDOT | −0.631 | 0.16 | 0.156 | 0.344 | 4.77 × 10−7 |
PEDOT @TiO2 layer | −0.740 | 0.21 | 0.351 | 0.531 | 7.46 × 0−7 |
CEs | RS (Ω) | RCT (Ω) | Zdiff (Ω) | ZN (Ω) |
---|---|---|---|---|
Pt | 7.868 | 5.618 | ------- | 3.278 |
PPy | 12.350 | 5.757 | ------- | 7.811 |
PPy@TiO2 layer | 13.430 | 5.007 | ------- | 5.605 |
PEDOT | 7.443 | 5.655 | 13.059 | 6.554 |
PEDOT @TiO2 layer | 8.000 | 4.457 | 6.792 | 5.115 |
CE | VOC (V) | JSC (mA cm−2) | FF (%) | PCE (%) |
---|---|---|---|---|
Pt | 0.811 | 10.161 | 73.578 | 6.065 |
PPy | 0.809 | 8.611 | 69.041 | 4.811 |
PPy@TiO2 layer | 0.805 | 10.924 | 72.004 | 6.332 |
PEDOT | 0.811 | 10.289 | 73.599 | 6.141 |
PEDOT @TiO2 layer | 0.809 | 11.222 | 72.872 | 6.617 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.S.A.; Yi, X.; Zhao, X.; Xiang, W.; Abdelmotallieb, M. Electrodeposited PPy@TiO2 and PEDOT@TiO2 Counter Electrodes for [Co(bpy)3]2+/3+ Redox Mediator-Based Dye-Sensitized Solar Cells. Inorganics 2022, 10, 213. https://doi.org/10.3390/inorganics10110213
Ahmed ASA, Yi X, Zhao X, Xiang W, Abdelmotallieb M. Electrodeposited PPy@TiO2 and PEDOT@TiO2 Counter Electrodes for [Co(bpy)3]2+/3+ Redox Mediator-Based Dye-Sensitized Solar Cells. Inorganics. 2022; 10(11):213. https://doi.org/10.3390/inorganics10110213
Chicago/Turabian StyleAhmed, Abdelaal S. A., Xie Yi, Xiujian Zhao, Wanchun Xiang, and Mohammed Abdelmotallieb. 2022. "Electrodeposited PPy@TiO2 and PEDOT@TiO2 Counter Electrodes for [Co(bpy)3]2+/3+ Redox Mediator-Based Dye-Sensitized Solar Cells" Inorganics 10, no. 11: 213. https://doi.org/10.3390/inorganics10110213
APA StyleAhmed, A. S. A., Yi, X., Zhao, X., Xiang, W., & Abdelmotallieb, M. (2022). Electrodeposited PPy@TiO2 and PEDOT@TiO2 Counter Electrodes for [Co(bpy)3]2+/3+ Redox Mediator-Based Dye-Sensitized Solar Cells. Inorganics, 10(11), 213. https://doi.org/10.3390/inorganics10110213