Highly Porous Cyanometallic Spin-Crossover Frameworks Employing Pyridazino[4,5-d]pyridazine Bridge
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gütlich, P.; Goodwin, H.A. (Eds.) Spin Crossover in Transition Metal Compounds I–III; Topics in Current Chemistry; Springer: Berlin, Germany, 2004. [Google Scholar]
- Muñoz, M.C.; Real, J.A. Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers. Coord. Chem. Rev. 2011, 255, 2068–2093. [Google Scholar] [CrossRef]
- Gütlich, P.; Gaspar, A.B.; Garcia, Y. Spin state switching in iron coordination compounds. Beilstein J. Org. Chem. 2013, 9, 342–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucheriv, O.I.; Fritsky, I.O.; Gural’skiy, I.A. Spin crossover in FeII cyanometallic frameworks. Inorg. Chim. Acta 2021, 521, 120303. [Google Scholar] [CrossRef]
- Cirera, J. Guest effect on spin-crossover frameworks. Rev. Inorg. Chem. 2014, 34, 199–216. [Google Scholar] [CrossRef]
- Ni, Z.-P.; Liu, J.-L.; Hoque, M.N.; Liu, W.; Li, J.-Y.; Chen, Y.-C.; Tong, M.-L. Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coord. Chem. Rev. 2017, 335, 28–43. [Google Scholar] [CrossRef]
- Murphy, M.J.; Zenere, K.A.; Ragon, F.; Southon, P.D.; Kepert, C.J.; Neville, S.M. Guest Programmable Multlstep Spin Crossover in a Porous 2-D Hofmann-Type Material. J. Am. Chem. Soc. 2017, 139, 1330–1335. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Peng, Y.; Wu, S.; Chen, Y.-C.; Hoque, M.N.; Ni, Z.; Chen, X.; Tong, M.-L. Guest-Switchable Multi-Step Spin Transitions in an Amine-Functionalized Metal-Organic Framework. Angew. Chem. Int. Ed. 2017, 129, 15178–15182. [Google Scholar] [CrossRef]
- Piñeiro-López, L.; Valverde-Muñoz, F.-J.; Trzop, E.; Muñoz, M.C.; Seredyuk, M.; Castells-Gil, J.; da Silva, I.; Martí-Gastaldo, C.; Collet, E.; Real, J.A. Guest induced reversible on–off switching of elastic frustration in a 3D spin crossover coordination polymer with room temperature hysteretic behaviour. Chem. Sci. 2021, 12, 1317–1326. [Google Scholar] [CrossRef]
- Létard, J.-F.; Guionneau, P.; Goux-Capes, L. Towards Spin Crossover Applications. In Spin Crossover in Transition Metal Compounds III; Topics in Current Chemistry; Gütlich, P., Goodwin, H.A., Eds.; Springer: Berlin, Germany, 2004; pp. 221–249. [Google Scholar]
- Bousseksou, A.; Molnár, G.; Salmon, L.; Nicolazzi, W. Molecular spin crossover phenomenon: Recent achievements and prospects. Chem. Soc. Rev. 2011, 40, 3313. [Google Scholar] [CrossRef]
- Real, J.A.; Andres, E.; Munoz, M.C.; Julve, M.; Granier, T.; Bousseksou, A.; Varret, F. Spin Crossover in a Catenane Supramolecular System. Science 1995, 268, 265–267. [Google Scholar] [CrossRef]
- Romero-Morcillo, T.; De la Pinta, N.; Callejo, L.M.; Piñeiro-López, L.; Muñoz, M.C.; Madariaga, G.; Ferrer, S.; Breczewski, T.; Cortés, R.; Real, J.A. Nanoporosity, Inclusion Chemistry, and Spin Crossover in Orthogonally Interlocked Two-Dimensional Metal-Organic Frameworks. Chem. Eur. J. 2015, 21, 12112–12120. [Google Scholar] [CrossRef] [PubMed]
- De La Pinta, N.; Klar, P.B.; Breczewski, T.; Madariaga, G. Host Polytypism and Structural Modulation in Two-Dimensional Fe(NCS)2-Based Metal–Organic Frameworks: Can Spin-Crossover Transitions Be Predicted? Cryst. Growth Des. 2020, 20, 422–433. [Google Scholar] [CrossRef]
- Orellana-Silla, A.; Valverde-Muñoz, F.J.; Muñoz, M.C.; Bartual-Murgui, C.; Ferrer, S.; Real, J.A. Halobenzene Clathrates of the Porous Metal–Organic Spin-Crossover Framework [Fe(tvp)2(NCS)2]n. Stabilization of a Four-Step Transition. Inorg. Chem. 2022, 61, 4484–4493. [Google Scholar] [CrossRef]
- Noro, S.; Kondo, M.; Ishii, T.; Kitagawa, S.; Matsuzaka, H. Syntheses and crystal structures of iron co-ordination polymers with 4,4′-bipyridine (4,4′-bpy) and 4,4′-azopyridine (azpy). Two-dimensional networks supported by hydrogen bonding, {[Fe(azpy)(NCS)2(MeOH)2]·azpy}n and {[Fe(4,4′-bpy)(NCS)2(H2O)2]·4,4′-bpy}n. J. Chem. Soc. Dalton Trans. 1999, 10, 1569–1574. [Google Scholar] [CrossRef]
- Halder, G.J. Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material. Science 2002, 298, 1762–1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neville, S.M.; Moubaraki, B.; Murray, K.S.; Kepert, C.J. A Thermal Spin Transition in a Nanoporous Iron(II) Coordination Framework Material. Angew. Chem. Int. Ed. 2007, 46, 2059–2062. [Google Scholar] [CrossRef] [PubMed]
- Neville, S.M.; Halder, G.J.; Chapman, K.W.; Duriska, M.B.; Moubaraki, B.; Murray, K.S.; Kepert, C.J. Guest Tunable Structure and Spin Crossover Properties in a Nanoporous Coordination Framework Material. J. Am. Chem. Soc. 2009, 131, 12106–12108. [Google Scholar] [CrossRef]
- Neville, S.M.; Halder, G.J.; Chapman, K.W.; Duriska, M.B.; Southon, P.D.; Cashion, J.D.; Létard, J.-F.; Moubaraki, B.; Murray, K.S.; Kepert, C.J. Single-Crystal to Single-Crystal Structural Transformation and Photomagnetic Properties of a Porous Iron(II) Spin-Crossover Framework. J. Am. Chem. Soc. 2008, 130, 2869–2876. [Google Scholar] [CrossRef]
- Niel, V.; Martinez-Agudo, J.M.; Muñoz, M.C.; Gaspar, A.B.; Real, J.A. Cooperative Spin Crossover Behavior in Cyanide-Bridged Fe(II)−M(II) Bimetallic 3D Hofmann-like Networks (M = Ni, Pd, and Pt). Inorg. Chem. 2001, 40, 3838–3839. [Google Scholar] [CrossRef]
- Southon, P.D.; Liu, L.; Fellows, E.A.; Price, D.J.; Halder, G.J.; Chapman, K.W.; Moubaraki, B.; Murray, K.S.; Létard, J.-F.; Kepert, C.J. Dynamic Interplay between Spin-Crossover and Host−Guest Function in a Nanoporous Metal−Organic Framework Material. J. Am. Chem. Soc. 2009, 131, 10998–11009. [Google Scholar] [CrossRef]
- Agustí, G.; Ohtani, R.; Yoneda, K.; Gaspar, A.B.; Ohba, M.; Sánchez-Royo, J.F.; Muñoz, M.C.; Kitagawa, S.; Real, J.A. Oxidative Addition of Halogens on Open Metal Sites in a Microporous Spin-Crossover Coordination Polymer. Angew. Chem. Int. Ed. 2009, 48, 8944–8947. [Google Scholar] [CrossRef] [PubMed]
- Ohba, M.; Yoneda, K.; Agustí, G.; Muñoz, M.C.; Gaspar, A.B.; Real, J.A.; Yamasaki, M.; Ando, H.; Nakao, Y.; Sakaki, S.; et al. Bidirectional Chemo-Switching of Spin State in a Microporous Framework. Angew. Chem. Int. Ed. 2009, 48, 4767–4771. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, R.; Yoneda, K.; Furukawa, S.; Horike, N.; Kitagawa, S.; Gaspar, A.B.; Muñoz, M.C.; Real, J.A.; Ohba, M. Precise Control and Consecutive Modulation of Spin Transition Temperature Using Chemical Migration in Porous Coordination Polymers. J. Am. Chem. Soc. 2011, 133, 8600–8605. [Google Scholar] [CrossRef] [PubMed]
- Muñoz Lara, F.J.; Gaspar, A.B.; Aravena, D.; Ruiz, E.; Muñoz, M.C.; Ohba, M.; Ohtani, R.; Kitagawa, S.; Real, J.A. Enhanced bistability by guest inclusion in Fe(II) spin crossover porous coordination polymers. Chem. Commun. 2012, 48, 4686. [Google Scholar] [CrossRef]
- Arcís-Castillo, Z.; Muñoz-Lara, F.J.; Muñoz, M.C.; Aravena, D.; Gaspar, A.B.; Sánchez-Royo, J.F.; Ruiz, E.; Ohba, M.; Matsuda, R.; Kitagawa, S.; et al. Reversible Chemisorption of Sulfur Dioxide in a Spin Crossover Porous Coordination Polymer. Inorg. Chem. 2013, 52, 12777–12783. [Google Scholar] [CrossRef]
- Aravena, D.; Castillo, Z.A.; Muñoz, M.C.; Gaspar, A.B.; Yoneda, K.; Ohtani, R.; Mishima, A.; Kitagawa, S.; Ohba, M.; Real, J.A.; et al. Guest modulation of spin-crossover transition temperature in a porous Iron(II) metal-organic framework: Experimental and periodic DFT studies. Chem. Eur. J. 2014, 20, 12864–12873. [Google Scholar] [CrossRef]
- Polyzou, C.D.; Lalioti, N.; Psycharis, V.; Tangoulis, V. Guest induced hysteretic tristability in 3D pillared Hofmann-type microporous metal–organic frameworks. New J. Chem. 2017, 41, 12384–12387. [Google Scholar] [CrossRef]
- Alvarado-Alvarado, D.; González-Estefan, J.H.; Flores, J.G.; Álvarez, J.R.; Aguilar-Pliego, J.; Islas-Jácome, A.; Chastanet, G.; González-Zamora, E.; Lara-García, H.A.; Alcántar-Vázquez, B.; et al. Water Adsorption Properties of Fe(pz)[Pt(CN)4] and the Capture of CO2 and CO. Organometallics 2020, 39, 949–955. [Google Scholar] [CrossRef]
- Piñeiro-López, L.; Seredyuk, M.; Muñoz, M.C.; Real, J.A. Two- and one-step cooperative spin transitions in Hofmann-like clathrates with enhanced loading capacity. Chem. Commun. 2014, 50, 1833–1835. [Google Scholar] [CrossRef]
- Piñeiro-López, L.; Valverde-Muñoz, F.J.; Seredyuk, M.; Muñoz, M.C.; Haukka, M.; Real, J.A. Guest Induced Strong Cooperative One- and Two-Step Spin Transitions in Highly Porous Iron(II) Hofmann-Type Metal–Organic Frameworks. Inorg. Chem. 2017, 56, 7038–7047. [Google Scholar] [CrossRef]
- Piñeiro-López, L.; Seredyuk, M.; Muñoz, M.C.; Real, J.A. Effect of Guest Molecules on Spin Transition Temperature in Loaded Hofmann-Like Clathrates with Improved Porosity. Eur. J. Inorg. Chem. 2020, 2020, 764–769. [Google Scholar] [CrossRef]
- Liu, F.-L.; Li, D.; Su, L.-J.; Tao, J. Reversible three equal-step spin crossover in an iron(II) Hofmann-type metal–organic framework. Dalton Trans. 2018, 47, 1407–1411. [Google Scholar] [CrossRef] [PubMed]
- Sciortino, N.F.; Scherl-Gruenwald, K.R.; Chastanet, G.; Halder, G.J.; Chapman, K.W.; Létard, J.-F.; Kepert, C.J. Hysteretic Three-Step Spin Crossover in a Thermo- and Photochromic 3D Pillared Hofmann-type Metal–Organic Framework. Angew. Chem. Int. Ed. 2012, 51, 10154–10158. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Lara, F.J.; Gaspar, A.B.; Muñoz, M.C.; Ksenofontov, V.; Real, J.A. Novel Iron(II) Microporous Spin-Crossover Coordination Polymers with Enhanced Pore Size. Inorg. Chem. 2013, 52, 3–5. [Google Scholar] [CrossRef]
- Bartual-Murgui, C.; Ortega-Villar, N.A.; Shepherd, H.J.; Muñoz, M.C.; Salmon, L.; Molnár, G.; Bousseksou, A.; Real, J.A. Enhanced porosity in a new 3D Hofmann-like network exhibiting humidity sensitive cooperative spin transitions at room temperature. J. Mater. Chem. 2011, 21, 7217. [Google Scholar] [CrossRef]
- Bartual-Murgui, C.; Salmon, L.; Akou, A.; Ortega-Villar, N.A.; Shepherd, H.J.; Muñoz, M.C.; Molnár, G.; Real, J.A.; Bousseksou, A. Synergetic Effect of Host–Guest Chemistry and Spin Crossover in 3D Hofmann-like Metal–Organic Frameworks [Fe(bpac)M(CN)4] (M=Pt, Pd, Ni). Chem. Eur. J. 2012, 18, 507–516. [Google Scholar] [CrossRef]
- Bartual-Murgui, C.; Akou, A.; Shepherd, H.J.; Molnár, G.; Real, J.A.; Salmon, L.; Bousseksou, A. Tunable Spin-Crossover Behavior of the Hofmann-like Network {Fe(bpac)[Pt(CN)4]} through Host–Guest Chemistry. Chem. Eur. J. 2013, 19, 15036–15043. [Google Scholar] [CrossRef]
- Agustí, G.; Cobo, S.; Gaspar, A.B.; Molnár, G.; Moussa, N.O.; Szilágyi, P.Á.; Pálfi, V.; Vieu, C.; Muñoz, M.C.; Real, J.A.; et al. Thermal and Light-Induced Spin Crossover Phenomena in New 3D Hofmann-Like Microporous Metalorganic Frameworks Produced As Bulk Materials and Nanopatterned Thin Films. Chem. Mater. 2008, 20, 6721–6732. [Google Scholar] [CrossRef]
- Muñoz-Lara, F.J.; Gaspar, A.B.; Muñoz, M.C.; Arai, M.; Kitagawa, S.; Ohba, M.; Real, J.A. Sequestering Aromatic Molecules with a Spin-Crossover FeII Microporous Coordination Polymer. Chem. Eur. J. 2012, 18, 8013–8018. [Google Scholar] [CrossRef]
- Shepherd, H.J.; Bartual-Murgui, C.; Molnár, G.; Real, J.A.; Muñoz, M.C.; Salmon, L.; Bousseksou, A. Thermal and pressure-induced spin crossover in a novel three-dimensional Hoffman-like clathrate complex. New J. Chem. 2011, 35, 1205. [Google Scholar] [CrossRef]
- Arcís-Castillo, Z.; Muñoz, M.C.; Molnár, G.; Bousseksou, A.; Real, J.A. [Fe(TPT)2/3{MI(CN)2}2]⋅nSolv (MI=Ag, Au): New Bimetallic Porous Coordination Polymers with Spin-Crossover Properties. Chem. Eur. J. 2013, 19, 6851–6861. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ni, Z.; Yan, Z.; Zhang, Z.; Chen, Y.; Liu, W.; Tong, M. Cyanide-bridged bimetallic 3D Hoffman-like coordination polymers with tunable magnetic behaviour. Cryst. Eng. Comm. 2014, 16, 6444–6449. [Google Scholar] [CrossRef]
- Li, J.; Yan, Z.; Ni, Z.; Zhang, Z.; Chen, Y.; Liu, W.; Tong, M. Guest-Effected Spin-Crossover in a Novel Three-Dimensional Self-Penetrating Coordination Polymer with Permanent Porosity. Inorg. Chem. 2014, 53, 4039–4046. [Google Scholar] [CrossRef]
- Clements, J.E.; Price, J.R.; Neville, S.M.; Kepert, C.J. Perturbation of Spin Crossover Behavior by Covalent Post-Synthetic Modification of a Porous Metal–Organic Framework. Angew. Chem. Int. Ed. 2014, 53, 10164–10168. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, Y.; Zhang, Z.; Liu, W.; Ni, Z.; Tong, M. Tuning the Spin-Crossover Behaviour of a Hydrogen-Accepting Porous Coordination Polymer by Hydrogen-Donating Guests. Chem. Eur. J. 2015, 21, 1645–1651. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Y.; He, C.-T.; Chen, Y.-C.; Zhang, Z.-M.; Liu, W.; Ni, Z.-P.; Tong, M.-L. Tunable cooperativity in a spin-crossover Hoffman-like metal–organic framework material by aromatic guests. J. Mater. Chem. C 2015, 3, 7830–7835. [Google Scholar] [CrossRef]
- Mullaney, B.R.; Goux-Capes, L.; Price, D.J.; Chastanet, G.; Létard, J.; Kepert, C.J. Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material. Nat. Commun. 2017, 8, 1053. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Dong, Y.; Yan, Z.; Chen, Y.; Song, X.; Li, Q.; Zhang, C.; Ni, Z.; Tong, M. A New Porous Three-Dimensional Iron(II) Coordination Polymer with Solvent-Induced Reversible Spin-Crossover Behavior. Cryst. Growth Des. 2018, 18, 5214–5219. [Google Scholar] [CrossRef]
- Valverde-Muñoz, F.J.; Muñoz, M.C.; Ferrer, S.; Bartual-Murgui, C.; Real, J.A. Switchable Spin-Crossover Hofmann-Type 3D Coordination Polymers Based on Tri- and Tetratopic Ligands. Inorg. Chem. 2018, 57, 12195–12205. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Dai, J.-W.; Shiota, Y.; Yoshizawa, K.; Kanegawa, S.; Sato, O. Multi-Step Spin Crossover Accompanied by Symmetry Breaking in an FeIII Complex: Crystallographic Evidence and DFT Studies. Chem. Eur. J. 2013, 19, 12948–12952. [Google Scholar] [CrossRef]
- Ortega-Villar, N.; Muñoz, M.; Real, J. Symmetry Breaking in Iron(II) Spin-Crossover Molecular Crystals. Magnetochemistry 2016, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Phonsri, W.; Davies, C.G.; Jameson, G.N.L.; Moubaraki, B.; Ward, J.S.; Kruger, P.E.; Chastanet, G.; Murray, K.S. Symmetry breaking above room temperature in an Fe(II) spin crossover complex with an N4O2 donor set. Chem. Commun. 2017, 53, 1374–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, C.; Jia, S.; Dong, Y.; Xu, J.; Sui, H.; Wang, F.; Li, D. Symmetry Breaking and Two-Step Spin-Crossover Behavior in Two Cyano-Bridged Mixed-Valence {FeIII2(μ-CN)4FeII2} Clusters. Inorg. Chem. 2019, 58, 14316–14324. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-J.; Lian, K.-T.; Huang, G.-Z.; Bala, S.; Ni, Z.-P.; Tong, M.-L. Hysteretic four-step spin-crossover in a 3D Hofmann-type metal–organic framework with aromatic guest. Chem. Commun. 2019, 55, 11033–11036. [Google Scholar] [CrossRef]
- Zhang, C.-J.; Lian, K.-T.; Wu, S.-G.; Liu, Y.; Huang, G.-Z.; Ni, Z.-P.; Tong, M.-L. The substituent guest effect on four-step spin-crossover behavior. Inorg. Chem. Front. 2020, 7, 911–917. [Google Scholar] [CrossRef]
- Kitase, K.; Kitazawa, T. A novel two-step Fe–Au type spin-crossover behavior in a Hofmann-type coordination complex {Fe(4-methylpyrimidine)2[Au(CN)2]2}. Dalton Trans. 2020, 49, 12210–12214. [Google Scholar] [CrossRef]
- Hiiuk, V.M.; Shylin, S.I.; Barakhtii, D.D.; Korytko, D.M.; Kotsyubynsky, V.O.; Rotaru, A.; Shova, S.; Gural’skiy, I.A. Two-Step Spin Crossover in Hofmann-Type Coordination Polymers [Fe(2-phenylpyrazine)2{M(CN)2}2] (M = Ag, Au). Inorg. Chem. 2022, 61, 2093–2104. [Google Scholar] [CrossRef]
- Domasevitch, K.V.; Solntsev, P.V.; Gural’skiy, I.A.; Krautscheid, H.; Rusanov, E.B.; Chernega, A.N.; Howard, J.A.K. Silver(I) ions bridged by pyridazine: Doubling the ligand functionality for the design of unusual 3D coordination frameworks. Dalton Trans. 2007, 35, 3893–3905. [Google Scholar] [CrossRef]
- Shepherd, H.J.; Gural’skiy, I.A.; Quintero, C.M.; Tricard, S.; Salmon, L.; Molnár, G.; Bousseksou, A. Molecular actuators driven by cooperative spin-state switching. Nat. Commun. 2013, 4, 2607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Ketkaew, R.; Tantirungrotechai, Y.; Harding, P.; Chastanet, G.; Guionneau, P.; Marchivie, M.; Harding, D.J. OctaDist: A tool for calculating distortion parameters in spin crossover and coordination complexes. Dalton Trans. 2021, 50, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
[Fe(pp)Pd(CN)4]∙G (1) | [Fe(pp)Pt(CN)4]∙G (2) | |||
---|---|---|---|---|
Temperature (K) | 293 | 125 | 293 | 123 |
Spin State | HS | LS | HS | LS |
Empirical Formula * | C10H4FeN8Pd | C10H4FeN8Pd | C10H4FeN8Pt | C10H4FeN8Pt |
Mr | 398.46 | 398.46 | 487.15 | 487.15 |
Crystal System | monoclinic | monoclinic | monoclinic | monoclinic |
Space Group | P2/m | P2/m | P2/m | P2/m |
a (Å) | 7.1903(3) | 7.0619(6) | 7.1806(5) | 7.0971(6) |
b (Å) | 7.4599(2) | 7.1811(5) | 7.4575(5) | 7.2163(4) |
c (Å) | 8.4271(4) | 8.6859(7) | 8.4389(8) | 8.7642(8) |
β (°) | 107.071(5) | 112.392(10) | 107.185(9) | 112.610(10) |
V (Å3) | 432.11(3) | 407.27(6) | 431.72(6) | 414.36(6) |
Z | 1 | 1 | 1 | 1 |
ρcalc (g cm−3) | 1.531 | 1.625 | 1.874 | 1.952 |
μ (mm−1) | 1.880 | 1.995 | 8.933 | 9.307 |
Total Solvent Accessible Volume/Cell (Å3) | 159.1 | 146.5 | 160.0 | 149.3 |
Solvent Electrons/Cell | 35.2 | 33.6 | 35.2 | 13.4 |
Goodness-of-Fit on F2 | 1.065 | 1.059 | 0.891 | 1.019 |
Final R Indexes [I >= 2σ(I)] | R1 = 0.0251, wR2 = 0.0588 | R1 = 0.0425, wR2 = 0.0886 | R1 = 0.0373, wR2 = 0.0585 | R1 = 0.0359, wR2 = 0.0737 |
Final R Indexes ** [All Data] | R1 = 0.0309, wR2 = 0.0606 | R1 = 0.0469, wR2 = 0.0905 | R1 = 0.0383, wR2 = 0.0593 | R1 = 0.0367, wR2 = 0.0744 |
CCDC Number | 2212767 | 2212768 | 2212765 | 2212766 |
[Fe(pp)Pd(CN)4]∙G (1) | [Fe(pp)Pt(CN)4]∙G (2) | |||
---|---|---|---|---|
Temperature (K) | 293 | 125 | 293 | 123 |
Spin State | HS | LS | HS | LS |
˂Fe−N˃average (Å) | 2.168(2) | 1.953(3) | 2.163(5) | 1.961(5) |
˂Fe−N˃pp (Å) | 2.204(2) | 1.976(3) | 2.199(5) | 1.980(5) |
˂Fe−N˃CN (Å) | 2.150(2) | 1.942(3) | 2.145(4) | 1.951(4) |
Fe···Fe between Adjacent Layers (Å) | 9.335(1) | 8.865(1) | 9.326(1) | 8.908(1) |
Voct(FeN6) (Å3) | 13.536 | 9.916 | 13.454 | 10.028 |
∑ (°) | 32.0 | 21.2 | 27.3 | 24.0 |
∠ M−C≡N (°) | 4.1 | 6.5 | 2.1 | 5.4 |
∠ Fe−N≡C (°) | 20.7 | 12.7 | 22.9 | 13.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiiuk, V.M.; Shova, S.; Domasevitch, K.V.; Gural’skiy, I.A. Highly Porous Cyanometallic Spin-Crossover Frameworks Employing Pyridazino[4,5-d]pyridazine Bridge. Inorganics 2022, 10, 195. https://doi.org/10.3390/inorganics10110195
Hiiuk VM, Shova S, Domasevitch KV, Gural’skiy IA. Highly Porous Cyanometallic Spin-Crossover Frameworks Employing Pyridazino[4,5-d]pyridazine Bridge. Inorganics. 2022; 10(11):195. https://doi.org/10.3390/inorganics10110195
Chicago/Turabian StyleHiiuk, Volodymyr M., Sergiu Shova, Kostiantyn V. Domasevitch, and Il’ya A. Gural’skiy. 2022. "Highly Porous Cyanometallic Spin-Crossover Frameworks Employing Pyridazino[4,5-d]pyridazine Bridge" Inorganics 10, no. 11: 195. https://doi.org/10.3390/inorganics10110195
APA StyleHiiuk, V. M., Shova, S., Domasevitch, K. V., & Gural’skiy, I. A. (2022). Highly Porous Cyanometallic Spin-Crossover Frameworks Employing Pyridazino[4,5-d]pyridazine Bridge. Inorganics, 10(11), 195. https://doi.org/10.3390/inorganics10110195