Trivalent Cobalt Complexes with NNS Tridentate Thiosemicarbazones: Preparation, Structural Study and Investigation of Antibacterial Activity and Cytotoxicity against Human Breast Cancer Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Formation of the Cobalt(III) Complexes
2.2. X-ray Diffraction Analysis
2.3. Bacterial Inhibition
2.4. Cytotoxic Activity
3. Materials and Methods
3.1. Materials and Physical Measurements
3.2. X-ray Crystallography
3.3. Synthesis of the Complexes
3.4. In Vitro Antibacterial Activity Assay
3.5. Cytotoxic Activity against Cancer and Normal Cell Lines
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brown, K.L. Chemistry and Enzymology of Vitamin B12. Chem. Rev. 2005, 105, 2075–2150. [Google Scholar] [CrossRef] [PubMed]
- Thorarinsdottir, A.E.; Du, K.; Collins, J.H.P.; Harris, T.D. Ratiometric pH Imaging with a CoII2 MRI Probe via CEST Effects of Opposing pH Dependences. J. Am. Chem. Soc. 2017, 139, 15836–15847. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Hambley, T.W.; Bryce, N.S. Visualising the hypoxia selectivity of cobalt(iii) prodrugs. Chem. Sci. 2011, 2, 2135–2142. [Google Scholar] [CrossRef]
- Hurtado, R.R.; Harney, A.S.; Heffern, M.C.; Holbrook, R.J.; Holmgren, R.A.; Meade, T.J. Specific Inhibition of the Transcription Factor Ci by a Cobalt(III) Schiff Base–DNA Conjugate. Mol. Pharm. 2012, 9, 325–333. [Google Scholar] [CrossRef]
- Renfrew, A.K.; Bryce, N.S.; Hambley, T. Cobalt(III) Chaperone Complexes of Curcumin: Photoreduction, Cellular Accumulation and Light-Selective Toxicity towards Tumour Cells. Chem. Eur. J. 2015, 21, 15224–15234. [Google Scholar] [CrossRef]
- Cressey, P.B.; Eskandari, A.; Bruno, P.M.; Lu, C.; Hemann, M.T.; Suntharalingam, K. The Potent Inhibitory Effect of a Naproxen-Appended Cobalt(III)-Cyclam Complex on Cancer Stem Cells. ChemBioChem 2016, 17, 1713–1718. [Google Scholar] [CrossRef]
- Schwartz, J.A.; Lium, E.K.; Silverstein, S.J. Herpes Simplex Virus Type 1 Entry Is Inhibited by the Cobalt Chelate Complex CTC-96. J. Virol. 2001, 75, 4117–4128. [Google Scholar] [CrossRef]
- Weiqun, Z.; Wen, Y.; Liqun, X.; Xianchen, C. N-Benzoyl-N′-dialkylthiourea derivatives and their Co(III) complexes: Structure, and antifungal. J. Inorg. Biochem. 2005, 99, 1314–1319. [Google Scholar] [CrossRef]
- Miodragovic, D.U.; Bogdanovic, G.A.; Miodragovic, Z.M.; Radulovic, M.D.; Novakovic, S.B.; Kaludjerovic, G.N.; Kozlowski, H. Interesting coordination abilities of antiulcer drug famotidine and antimicrobial activity of drug and its cobalt(III) complex. J. Inorg. Biochem. 2006, 100, 1568–1574. [Google Scholar] [CrossRef]
- Wegner, S.V.; Spatz, J.P. Cobalt(III) as a Stable and Inert Mediator Ion between NTA and His6-Tagged Proteins. Angew. Chem. Int. Ed. 2013, 52, 7593–7596. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.D.; Failes, T.W.; Yamamoto, N.; Hambley, T.W. Bioreductive activation and drug chaperoning in cobalt pharmaceuticals. Dalton Trans. 2007, 3983–3990. [Google Scholar] [CrossRef]
- Finch, R.A.; Liu, M.C.; Grill, S.P.; Rose, W.C.; Loomis, R.; Vasquez, K.M.; Cheng, Y.C.; Sartorelli, A.C. Triapine (3-aminopyridine-2-carboxaldehyde-thiosemicarbazone): A potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity. Biochem. Pharmacol. 2000, 59, 983–991. [Google Scholar] [CrossRef]
- Gojo, I.; Tidwell, M.L.; Greer, J.; Takebe, N.; Seiter, K.; Pochron, M.F.; Johnson, B.; Sznol, M.; Karp, J.E. Phase I and pharmacokinetic study of Triapine®, a potent ribonucleotide reductase inhibitor, in adults with advanced hematologic malignancies. Leuk. Res. 2007, 31, 1165–1173. [Google Scholar] [CrossRef]
- Wadler, S.; Makower, D.; Clairmont, C.; Lambert, P.; Fehn, K.; Sznol, M. Phase I and Pharmacokinetic Study of the Ribonucleotide Reductase Inhibitor, 3-Aminopyridine-2-Carboxaldehyde Thiosemicarbazone, Administered by 96-Hour Intravenous Continuous Infusion. J. Clin. Oncol. 2004, 22, 1553–1563. [Google Scholar] [CrossRef]
- Karp, J.E.; Giles, F.J.; Gojo, I.; Morris, L.; Greer, J.; Johnson, B.; Thein, M.; Sznol, M.; Low, J. A Phase I study of the novel ribonucleotide reductase inhibitor 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine®) in combination with the nucleoside analog fludarabine for patients with refractory acute leukemias and aggressive myeloproliferative disorders. Leuk. Res. 2008, 32, 71–77. [Google Scholar]
- Allen, F.H. The Cambridge Structural Database: A quarter of a million crystal structures and rising. Acta Crystallogr. B 2002, 58, 380–388. [Google Scholar] [CrossRef]
- El-Ayaan, U.; Youssef, M.M.; Al-Shihry, S. Mn(II), Co(II), Zn(II), Fe(III) and U (VI) complexes of 2-acetylpyridine 4N-(2-pyridyl) thiosemicarbazone (HAPT); structural, spectroscopic and biological studies. J. Mol. Struct. 2009, 936, 213–219. [Google Scholar] [CrossRef]
- Sampath, K.; Sathiyaraj, S.; Jayabalakrishnan, C. DNA binding, DNA cleavage, antioxidant and cytotoxicity studies on ruthenium(II) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones. Spectrochim. Acta A 2013, 105, 582–592. [Google Scholar] [CrossRef]
- Reis, D.C.; Pinto, M.C.X.; Souza-Fagundes, E.M.; Wardell, S.M.S.V.; Wardell, J.L.; Beraldo, H. Antimony(III) complexes with 2-benzoylpyridine-derived thiosemicarbazones: Cytotoxicity against human leukemia cell lines. Eur. J. Med. Chem. 2010, 45, 3904–3910. [Google Scholar] [CrossRef]
- Pathan, A.H.; Ramesh, A.K.; Bakale, R.P.; Naik, G.N.; Kumar, H.G.R.; Frampton, C.S.; Rao, G.M.A.; Gudasi, K.B. Association of late transition metal complexes with ethyl 2-(2-(4-chlorophenylcarbamothioyl)hydrazono)propanoate: Design, synthesis and in vitro anticancer studies. Inorg. Chim. Acta 2015, 430, 216–224. [Google Scholar] [CrossRef]
- Mendes, I.C.; Soares, M.A.; Dos Santos, R.G.; Pinheiro, C.; Beraldo, H. Gallium(III) complexes of 2-pyridineformamide thiosemicarbazones: Cytotoxic activity against malignant glioblastoma. Eur. J. Med. Chem. 2009, 44, 1870–1877. [Google Scholar] [CrossRef]
- Da Silva, J.G.; Azzolini, L.S.; Wardell, S.M.S.V.; Wardell, J.L.; Beraldo, H. Increasing the antibacterial activity of gallium(III) against Pseudomonas aeruginosa upon coordination to pyridine-derived thiosemicarbazones. Polyhedron 2009, 28, 2301–2305. [Google Scholar] [CrossRef]
- Mendes, I.C.; Moreira, J.P.; Ardisson, J.D.; Dos Santos, R.G.; Da Silva, P.R.O.; Garcia, I.; Castiñeiras, A.; Beraldo, H. Organotin(IV) complexes of 2-pyridineformamide-derived thiosemicarbazones: Antimicrobial and cytotoxic effects. Eur. J. Med. Chem. 2008, 43, 1454–1461. [Google Scholar] [CrossRef]
- Parrilha, G.L.; Da Silva, J.G.; Gouveia, L.F.; Gasparoto, A.K.; Dias, R.P.; Rocha, W.R.; Santos, D.A.; Speziali, N.L.; Beraldo, H. Pyridine-derived thiosemicarbazones and their tin(IV) complexes with antifungal activity against Candida spp. Eur. J. Med. Chem. 2011, 46, 1473–1482. [Google Scholar] [CrossRef]
- Merlino, A.; Benitez, D.; Chavez, S.; Da Cunha, J.; Hernandez, P.; Tinoco, L.W.; Campillo, N.E.; Paez, J.A.; Cerecetto, H.; Gonzalez, M. Development of second generation amidinohydrazones, thio- and semicarbazones as Trypanosoma cruzi-inhibitors bearing benzofuroxan and benzimidazole 1,3-dioxide core scaffolds. Med. Chem. Commun. 2010, 1, 216–228. [Google Scholar] [CrossRef]
- Parrilha, G.L.; Dias, R.P.; Rocha, W.R.; Mendes, I.C.; Benetez, D.; Varela, J.; Cerecetto, H.; Gonzalez, M.; Melo, C.M.L.; Neves, J.K.A.L.; et al. 2-Acetylpyridine- and 2-benzoylpyridine-derived thiosemicarbazones and their antimony(III) complexes exhibit high anti-trypanosomal activity. Polyhedron 2012, 31, 614621. [Google Scholar] [CrossRef]
- Klayman, D.L.; Bartosevich, J.F.; Griffin, T.S.; Mason, C.J.; Scovill, J.P. 2-Acetylpyridine thiosemicarbazones. 1. A new class of potential antimalarial agents. J. Med. Chem. 1979, 22, 855–862. [Google Scholar] [CrossRef]
- Pape, V.F.S.; Tóth, S.; Füred, A.; Szebényi, K.; Lovrics, A.; Szabó, P.; Wiese, M.; Szakács, G. Design, synthesis and biological evaluation of thiosemicarbazones, hydrazinobenzothiazoles and arylhydrazones as anticancer agents with a potential to overcome multidrug resistance. Eur. J. Med. Chem. 2016, 117, 335–354. [Google Scholar] [CrossRef]
- Ibrahim, A.B.M.; Farh, M.K.; Mayer, P. Copper complexes of new thiosemicarbazone ligands: Synthesis, structural studies and antimicrobial activity. Inorg. Chem. Commun. 2018, 94, 127–132. [Google Scholar] [CrossRef]
- Ibrahim, A.B.M.; Farh, M.K.; Plaisier, J.R.; Shalaby, E.M. Synthesis, structural and antimicrobial studies of binary and ternary complexes of a new tridentate thiosemicarbazone. Future Med. Chem. 2018, 10, 2507–2519. [Google Scholar] [CrossRef]
- Ibrahim, A.B.M.; Farh, M.K.; Mayer, P. Synthesis, structural studies and antimicrobial evaluation of nickel (II) complexes of NNS tridentate thiosemicarbazone based ligands. Appl. Organomet. Chem. 2019, 33, e4883. [Google Scholar] [CrossRef]
- Ibrahim, A.B.M.; Farh, M.K.; Santos, I.C.; Paulo, A. Nickel Complexes Bearing SNN and SS Donor Atom Ligands: Synthesis, Structural Characterization and Biological activity. Appl. Organomet. Chem. 2019, 33, e5088. [Google Scholar] [CrossRef]
- Ibrahim, A.B.M.; Farh, M.K.; El-Gyar, S.A.; EL-Gahami, M.A.; Fouad, D.M.; Silva, F.; Santos, I.C.; Paulo, A. Synthesis, structural studies and antimicrobial activities of manganese, nickel and copper complexes of two new tridentate 2-formylpyridine thiosemicarbazone ligands. Inorg. Chem. Commun. 2018, 96, 194–201. [Google Scholar] [CrossRef]
- Mahmoud, G.A.-E.; Ibrahim, A.B.M.; Mayer, P. Zn(II) and Cd(II) thiosemicarbazones for stimulation/inhibition of kojic acid biosynthesis from Aspergillus flavus and the fungal defense behavior against the metal complexes’ excesses. J. Biol. Inorg. Chem. 2020, 25, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Geary, W.J. The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar] [CrossRef]
- Filipović, N.R.; Bjelogrlić, S.; Portalone, G.; Pelliccia, S.; Silvestri, R.; Klisurić, O.; Senćanski, M.; Stanković, D.; Todorović, T.R.; Muller, C.D. Pro-apoptotic and pro-differentiation induction by 8-quinolinecarboxaldehyde selenosemicarbazone and its Co(iii) complex in human cancer cell lines. Med. Chem. Commun. 2016, 7, 1604–1616. [Google Scholar] [CrossRef]
- Giriraj, K.; Kasim, M.S.M.; Balasubramaniam, K.; Thangavel, S.K.; Venkatesan, J.; Suresh, S.; Shanmugam, P.; Karri, C. Various coordination modes of new coumarin Schiff bases toward Cobalt (III) ion: Synthesis, spectral characterization, in vitro cytotoxic activity, and investigation of apoptosis. Appl. Organomet. Chem. 2022, 36, e6536. [Google Scholar] [CrossRef]
- West, D.X.; Swearingena, J.K.; Martinez, J.V.; Ortega, S.H.; El-Sawaf, A.K.; Meursd, F.; Castineirase, A.; Garciae, I.; Bermejoe, E. Spectral and structural studies of iron(III), cobalt(II,III) and nickel(II) complexes of 2-pyridineformamide N(4)-methylthiosemicarbazone. Polyhedron 1999, 18, 2919–2929. [Google Scholar] [CrossRef]
- Manikandan, R.; Viswanathamurthi, P.; Velmurugan, K.; Nandhakumar, R.; Hashimoto, T.; Endo, A. Synthesis, characterization and crystal structure of cobalt(III) complexes containing 2-acetylpyridine thiosemicarbazones: DNA/protein interaction, radical scavenging and cytotoxic activities. J. Photochem. Photobiol. B Biol. 2014, 130, 205–216. [Google Scholar] [CrossRef]
- Saha, N.C.; Saha, N.; Chaudhuri, S. X-ray structures of cobalt(III) complexes with bio-relevant pyrazolyl thiosemicarbazone: Indication of structural changes on the increasing bulkiness of the alkyl substituents on thiosemicarbazone moiety. Struct. Chem. 2007, 18, 245–251. [Google Scholar] [CrossRef]
- Fekete, T.; Tumah, H.; Woodwell, J.; Truant, A.; Satischandran, V.; Axelrod, P.; Kreter, B. A comparison of serial plate agar dilution, bauer-kirby disk diffusion, and the vitek automicrobic system for the determination of susceptibilities of Klebsiella spp., Enterobacter spp., and Pseudomonas aeruginosa to ten antimicrobial agents. Diagn. Microbiol. Infect. Dis. 1994, 18, 251–258. [Google Scholar] [CrossRef]
- Ibrahim, A.B.M.; Mahmoud, G.A.-E.; Cordes, D.B.; Slawin, A.M.Z. Pb (II) and Hg (II) thiosemicarbazones for inhibiting the broad-spectrum pathogen Cladosporium sphaerospermum ASU18 (MK387875) and altering its antioxidant system. Appl. Organomet. Chem. 2022, 36, e6798. [Google Scholar] [CrossRef]
- Abdolmaleki, S.; Yarmohammadi, N.; Adibi, H.; Ghadermazi, M.; Ashengroph, M.; Rudbari, H.A.; Bruno, G. Synthesis, X-ray studies, electrochemical properties, evaluation as in vitro cytotoxic and antibacterial agents of two antimony (III) complexes with dipicolinic acid. Polyhedron 2019, 159, 239–250. [Google Scholar] [CrossRef]
- Ferraz, K.S.O.; Silva, N.F.; da Silva, J.G.; de Miranda, L.F.; Romeiro, C.F.D.; Souza-Fagundes, E.M.; Mendes, I.C.; Beraldo, H. Investigation on the pharmacological profile of 2,6-diacetylpyridine bis(benzoylhydrazone) derivatives and their antimony(III) and bismuth(III) complexes. Eur. J. Med. Chem. 2012, 53, 98–106. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Kotian, A.; Kamat, V.; Naik, K.; Kokare, D.G.; Kumara, K.; Neratur, K.L.; Kumbar, V.; Bhat, K.; Revankar, V.K. 8-Hydroxyquinoline derived p-halo N4-phenyl substituted thiosemicarbazones: Crystal structures, spectral characterization and in vitro cytotoxic studies of their Co(III), Ni(II) and Cu(II) complexes. Bioorg. Chem. 2021, 112, 104962. [Google Scholar] [CrossRef]
- Hadjikakou, S.K.; Ozturk, I.I.; Banti, C.N.; Kourkoumelis, N.; Hadjiliadis, N. Recent advances on antimony(III/V) compounds with potential activity against tumor cells. J. Inorg. Biochem. 2015, 153, 293–305. [Google Scholar] [CrossRef]
- The program BrukerSAINT, Bruker AXS Inc.: Madison, WI, USA, 2012.
- Sheldrick, G.M. SADABS Software for Empirical Absorption Corrections; University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
Empirical formula | C26H24N10O6S2CoCl | µ (mm−1) | 0.872 |
Formula weight | 731.05 | F (000) | 748.0 |
Crystal system | Triclinic | θ range for data collection (°) | 2.508 to 25.499 |
space group | P -1 | Reflections collected | 5446 |
a (Å) | 11.8902 (8) | Unique refl. collected (Rint) | 4012 (0.0536) |
b (Å) | 12.4093 (8) | Completeness to theta | 98.9% |
c (Å) | 12.5613 (9) | Parameters (Restraints) | 511(537) |
α (°) | 118.026 (2) | Max. and min. transmission | 0.746 and 0.665 |
β (°) | 108.500 (2) | GOF on F2 | 1.090 |
γ (°) | 95.735 (2) | R1 [I > 2σ(I)] | 0.0581 |
Volume (Å3) | 1481.28 (18) | wR2 (all data) | 0.1582 |
Z | 2 | Largest diff. peak, hole/e Å−3 | 0.838 and −0.483 |
Density (g/cm3) | 1.639 | CCDC number | 2175750 |
Atoms | Distance (Å) | Atoms | Angle (°) | Atoms | Angle (°) |
---|---|---|---|---|---|
Co1—S1 | 2.215 (1) | S1—Co1—S2 | 90.50 (5) | Co1—S2—C20 | 94.4 (2) |
Co1—S2 | 2.208 (2) | S1—Co1—N1 | 168.0 (1) | Co1—N1—C1 | 129.1 (3) |
Co1—N1 | 1.969 (3) | S1—Co1—N2 | 85.1 (1) | Co1—N1—C5 | 111.2 (3) |
Co1—N2 | 1.885 (4) | S1—Co1—N6 | 91.4 (1) | Co1—N2—N3 | 124.8 (3) |
Co1—N6 | 1.971 (5) | S1—Co1—N7 | 95.3 (1) | Co1—N2—C6 | 116.1 (3) |
Co1—N7 | 1.881 (4) | S2—Co1—N1 | 89.9 (1) | Co1—N6—C14 | 129.9 (3) |
S1—C7 | 1.741 (6) | S2—Co1—N2 | 93.3 (1) | Co1—N6—C18 | 111.8 (3) |
S2—C20 | 1.744 (5) | S2—Co1—N6 | 168.1 (1) | Co1—N7—N8 | 124.3 (3) |
N1—C1 | 1.317 (6) | S2—Co1—N7 | 85.8 (1) | Co1—N7—C19 | 117.0 (3) |
N1—C5 | 1.366 (6) | N1—Co1—N2 | 82.9 (2) | C1—N1—C5 | 119.5 (4) |
N2—N3 | 1.362 (5) | N1—Co1—N6 | 90.7 (2) | N3—N2—C6 | 119.1 (4) |
N2—C6 | 1.297 (4) | N1—Co1—N7 | 96.7 (2) | N8—N7—C19 | 118.7 (4) |
N6—C14 | 1.331 (6) | N2—Co1—N6 | 98.6 (2) | C14—N6—C18 | 118.3 (4) |
N6—C18 | 1.368 (7) | N2—Co1—N7 | 179.1 (2) | N2—N3—C7 | 111.0 (4) |
N7—N8 | 1.377 (5) | N6—Co1—N7 | 82.3 (2) | N7—N8—C20 | 110.7 (4) |
N7—C19 | 1.285 (8) | Co1—S1—C7 | 94.6 (2) |
MCF-7 | BHK | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
HL1 | HL2 | C1 | C2 | dox | HL1 | HL2 | C1 | C2 | dox | |
IC50 (μM) | 52.4 | 145.4 | >136.8 * | 49.9 | 9.66 | 54.8 | 110.6 | >136.8 * | >131.4 * | 36.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathy, A.; Ibrahim, A.B.M.; Abd Elkhalik, S.; Villinger, A.; Abbas, S.M. Trivalent Cobalt Complexes with NNS Tridentate Thiosemicarbazones: Preparation, Structural Study and Investigation of Antibacterial Activity and Cytotoxicity against Human Breast Cancer Cells. Inorganics 2022, 10, 145. https://doi.org/10.3390/inorganics10090145
Fathy A, Ibrahim ABM, Abd Elkhalik S, Villinger A, Abbas SM. Trivalent Cobalt Complexes with NNS Tridentate Thiosemicarbazones: Preparation, Structural Study and Investigation of Antibacterial Activity and Cytotoxicity against Human Breast Cancer Cells. Inorganics. 2022; 10(9):145. https://doi.org/10.3390/inorganics10090145
Chicago/Turabian StyleFathy, Amany, Ahmed B. M. Ibrahim, S. Abd Elkhalik, Alexander Villinger, and S. M. Abbas. 2022. "Trivalent Cobalt Complexes with NNS Tridentate Thiosemicarbazones: Preparation, Structural Study and Investigation of Antibacterial Activity and Cytotoxicity against Human Breast Cancer Cells" Inorganics 10, no. 9: 145. https://doi.org/10.3390/inorganics10090145
APA StyleFathy, A., Ibrahim, A. B. M., Abd Elkhalik, S., Villinger, A., & Abbas, S. M. (2022). Trivalent Cobalt Complexes with NNS Tridentate Thiosemicarbazones: Preparation, Structural Study and Investigation of Antibacterial Activity and Cytotoxicity against Human Breast Cancer Cells. Inorganics, 10(9), 145. https://doi.org/10.3390/inorganics10090145