Enhancement in the Performance of Dye Sensitized Solar Cells (DSSCs) by Incorporation of Reduced Graphene Oxide (RGO) and Carbon Nanotubes (CNTs) in ZnO Nanostructures
Abstract
:1. Introduction
2. Experimental Details
2.1. Preparation of Zinc Oxide (ZnO)
2.2. Preparation of Graphene Oxide (GO)
2.3. Preparation of Reduced Graphene Oxide (RGO)
2.4. Growth of CNTs by CVD Method
2.5. Preparation of Nanocomposites of ZnO, RGO and CNTs
2.6. Fabrication of Dye-Sensitized Solar Cells (DSSC)
2.7. Characterizations
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardin, B.E.; Snaith, H.J.; McGehee, M.D. The renaissance of dye-sensitized solar cells. Nat. Photonics. 2012, 6, 162–169. [Google Scholar] [CrossRef]
- Babar, F.; Mehmood, U.; Asghar, H.; Mehdi, M.H.; Khan, A.U.H.; Khalid, H.; Huda, N.U.; Fatima, Z. Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: A comprehensive review. Energy Rev. 2020, 129, 109919. [Google Scholar] [CrossRef]
- Bella, F.; Gerbaldi, C.; Barolo, C.; Grätzel, M. Aqueous dye-sensitized solar cells. Chem. Soc. Rev. 2015, 44, 3431–3473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, L.M. Dye-sensitized nanocrystalline solar cells. Phys. Chem. Chem. Phys. 2007, 9, 2630–2642. [Google Scholar] [CrossRef]
- Won, S.; Kim, J.S. Spinach Extract Derived Carbon Dots Decorated on ZnO Nanorods for Photocatalytic Dye Degradation. Sci. Adv. Mater. 2021, 13, 922–926. [Google Scholar] [CrossRef]
- Yu, J.; Kim, J. Synthesis and Characterization of ZnO Doped with Gold Nanoparticles for Improved Photocatalytic Activity. Sci. Adv. Mater. 2021, 13, 944–948. [Google Scholar] [CrossRef]
- Chang, G.J.; Lin, S.Y.; Wu, J.J. Room-temperature chemical integration of ZnO nanoarchitectures on plastic substrates for flexible dye-sensitized solar cells. Nanoscale 2014, 6, 1329–1334. [Google Scholar] [CrossRef]
- Barpuzary, D.; Patra, A.S.; Vaghasiya, J.V.; Solanki, B.G.; Soni, S.S.; Qureshi, M. Highly efficient one-dimensional ZnO nanowire-based dye-sensitized solar cell using a metal-free, D− π− A-type, carbazole derivative with more than 5% power conversion. ACS Appl. Mater. Interfaces 2014, 6, 12629–12639. [Google Scholar] [CrossRef]
- Umar, A.; Singh, J.; Ibrahim, A.A.; Kumar, R.; Rai, P.; Rai, A.K.; Algadi, H.; Alhamami, M.A.M.; Elsddiq, M.M.E. Cauliflower-Shaped ZnO Nanostructure for Enhanced NO2 Gas Sensor Application. Sci. Adv. Mater. 2021, 13, 2358–2363. [Google Scholar] [CrossRef]
- Anta, J.A.; Guillén, E.; Tena-Zaera, R. ZnO-based dye-sensitized solar cells. J. Phys. Chem. C 2012, 116, 11413–11425. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Kim, I.T.; Choi, H.W. Characteristics of Perovskite Solar Cells with ZnGa2O4:Mn Phosphor Mixed Polyvinylidene Fluoride Down-Conversion Layer. J. Nanoelectron. Optoelectron. 2021, 16, 855–860. [Google Scholar] [CrossRef]
- Umar, A.; Ibrahim, A.A.; Kumar, R.; Rana, K.; Algadi, H.; Alhamami, M.A.M.; Elsddiq, M.M.E.; Mohammed, A.Y.A. Aluminum Doped ZnO Nanorods for Enhanced Phenylhydrazine Chemical Sensor Applications. Sci. Adv. Mater. 2021, 13, 2483–2488. [Google Scholar] [CrossRef]
- Wei, M.; Konishi, Y.; Zhou, H.; Yanagida, M.; Sugihara, H.; Arakawa, H. Highly efficient dye-sensitized solar cells composed of mesoporous titanium dioxide. J. Mater. Chem. 2006, 16, 1287–1293. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Chen, S.G.; Tang, X.H.; Palchik, O.; Zaban, A.; Koltypin, Y.; Gedanken, A. Mesoporous titanium dioxide: Sonochemical synthesis and application in dye-sensitized solar cells. J. Mater. Chem. 2001, 11, 521–526. [Google Scholar] [CrossRef]
- Law, M.; Greene, L.E.; Johnson, J.C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Terada, K.; Schlettwein, D.; Oekermann, T.; Sugiura, T.; Minoura, H. Electrochemical Self-Assembly of Nanoporous ZnO/Eosin Y Thin Films and Their Sensitized Photoelectrochemical Performance. Adv. Mater. 2000, 12, 1214. [Google Scholar] [CrossRef]
- Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H. Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4. Adv. Mater. 2005, 17, 2091. [Google Scholar] [CrossRef]
- Hussain, S.; Liu, T.; Kashif, M.; Lin, L.; Wu, S.; Guo, W.; Zeng, W.; Hashim, U. Effects of reaction time on the morphological, structural, and gas sensing properties of ZnO nanostructures. Mater. Sci. Semicond. Process. 2014, 18, 52–58. [Google Scholar] [CrossRef]
- Ahmed, F.; Arshi, N.; Anwar, M.S.; Danisha, R.; Koo, B.H. Morphological evolution of ZnO nanostructures and their aspect ratio-induced enhancement in photocatalytic properties. RSC Adv. 2014, 4, 29249–29263. [Google Scholar]
- Hussain, S.; Liu, T.; Kashif, M.; Miao, B.; He, J.; Zeng, W.; Zhang, Y.; Hashim, U.; Pan, F. Surfactant dependent growth of twinned ZnO nanodisks. Mater. Lett. 2014, 118, 165–168. [Google Scholar] [CrossRef]
- Koumura, N.; Zhong-Sheng, W.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K. Alkyl-functionalized organic dyes for efficient molecular photovoltaics. J. Am. Chem. Soc. 2006, 128, 14256–14257. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Zhai, J.; Wang, D.; Chen, Y.; Jiang, L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 2010, 4, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G. Ultrahigh electron mobility in suspended graphene. J. Hone Solid State Commun. 2008, 146, 1–355. [Google Scholar] [CrossRef] [Green Version]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498. [Google Scholar] [CrossRef]
- Alim, K.A.; Fonoberov, V.A.; Shamsa, M.; Balandin, A.A. Micro-Raman investigation of optical phonons in ZnO nanocrystals. J. Appl. Phys. 2005, 97, 124313. [Google Scholar] [CrossRef]
Samples | Voc (V) | Jsc (mA/cm2) | FF % | Efficiency (η) (%) |
---|---|---|---|---|
ZnO (85 °C) | 0.43 | 0.202 | 38.37 | 0.326 |
ZnO/RGO (0.5%) | 0.46 | 0.241 | 52.21 | 0.574 |
ZnO/CNTs (0.5%) | 0.48 | 0.220 | 58.10 | 0.612 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshahrie, A.; Alghamdi, A.A.; Hasan, P.M.Z.; Ahmed, F.; Albalawi, H.M.E.; Umar, A.; Alsulami, A. Enhancement in the Performance of Dye Sensitized Solar Cells (DSSCs) by Incorporation of Reduced Graphene Oxide (RGO) and Carbon Nanotubes (CNTs) in ZnO Nanostructures. Inorganics 2022, 10, 204. https://doi.org/10.3390/inorganics10110204
Alshahrie A, Alghamdi AA, Hasan PMZ, Ahmed F, Albalawi HME, Umar A, Alsulami A. Enhancement in the Performance of Dye Sensitized Solar Cells (DSSCs) by Incorporation of Reduced Graphene Oxide (RGO) and Carbon Nanotubes (CNTs) in ZnO Nanostructures. Inorganics. 2022; 10(11):204. https://doi.org/10.3390/inorganics10110204
Chicago/Turabian StyleAlshahrie, Ahmed, Ahmed A. Alghamdi, Prince M. Z. Hasan, Faheem Ahmed, Hanadi Mohammed Eid Albalawi, Ahmad Umar, and Abdullah Alsulami. 2022. "Enhancement in the Performance of Dye Sensitized Solar Cells (DSSCs) by Incorporation of Reduced Graphene Oxide (RGO) and Carbon Nanotubes (CNTs) in ZnO Nanostructures" Inorganics 10, no. 11: 204. https://doi.org/10.3390/inorganics10110204
APA StyleAlshahrie, A., Alghamdi, A. A., Hasan, P. M. Z., Ahmed, F., Albalawi, H. M. E., Umar, A., & Alsulami, A. (2022). Enhancement in the Performance of Dye Sensitized Solar Cells (DSSCs) by Incorporation of Reduced Graphene Oxide (RGO) and Carbon Nanotubes (CNTs) in ZnO Nanostructures. Inorganics, 10(11), 204. https://doi.org/10.3390/inorganics10110204