Effect of CuO Loading on the Photocatalytic Activity of SrTiO3/MWCNTs Nanocomposites for Dye Degradation under Visible Light
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of As-Prepared Samples
2.2. Photocatalytic Activity of the x% CuO/STO/MWCNTs
3. Materials and Methods
3.1. Materials
3.2. Preparation of STO Nanoparticles
3.3. Preparation of CuO/STO Nanoparticles
3.4. Preparation of STO/MWCNTs Nanoparticles
3.5. Preparation of CuO/STO/MWCNTs Nanocomposites
3.6. Characterization
3.7. Photocatalytic Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rauf, M.A.; Ashraf, S.S. Fundamental Principles and Application of Heterogeneous Photocatalytic Degradation of Dyes in Solution. Chem. Eng. J. 2009, 9, 10–18. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Krishnan, V. Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catal. 2020, 10, 10253–10315. [Google Scholar] [CrossRef]
- Asma, R.; Muhammad, I.S.; Ali, F.N.; Maaz, K.; Qasim, K. Muhammad Maqbool Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J. Ind. Eng. Chem. 2021, 7, 111–128. [Google Scholar] [CrossRef]
- Joy, R.; Haridas, S. Strontuim Titanate Aided Water Splitting: An Overview of Current Scenario. Int. J. Hydrog. Energy 2021, 46, 1879–1903. [Google Scholar] [CrossRef]
- Siebenhofer, M.; Viernstein, A.; Morgenbesser, M.; Fleig, J.; Kubicek, M. Photoinduced Electronic and Ionic Effects in Strontium Titanate. Mater. Adv. 2021, 2, 7583–7619. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, Y.; Xu, L.; Cao, J.; Ho, W.; Lee, S.C. Visible-Light-Active Plasmonic Ag–SrTiO3 Nanocomposites for the Degradation of NO in Air with High Selectivity. ACS Appl. Mater. Interfaces 2016, 8, 4165–4174. [Google Scholar] [CrossRef]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-Based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, G.; Feng, Y.; Chen, W.; Chen, J.; Yu, Z.; Zhang, Y.; Wang, J.; Tang, L. CuS Co-Catalyst Modified Hydrogenated SrTiO3 Nanoparticles as an Efficient Photocatalyst for H2 Evolution. Dalton Trans. 2021, 50, 7768–7775. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Fu, X.L.; Wang, C.F.; Ni, M.; Leung, M.K.H.; Wang, X.X.; Fu, X.Z. Hydrogen production over titania-based photocatalysts. ChemSusChem 2010, 3, 681–694. [Google Scholar] [CrossRef]
- Alireza, N.E.; Shohreh, H. Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst. Appl. Catal. A-Gen. 2010, 388, 149–159. [Google Scholar] [CrossRef]
- Hong, L.; Xiaofeng, W.; Xiangqi, L.; Ximei, F. Simple preparation of scale-like CuO nanoparticles coated on tetrapod-like ZnO whisker photocatalysts, Chin. J. Catal. 2014, 35, 1997–2005. [Google Scholar] [CrossRef]
- Sepideh, B.; Steffen, B.; Roger, G. Modification of SrTiO3 as a photocatalyst for hydrogen evolution from aqueous methanol solution. J. Photochem. Photobiol. A Chem. 2018, 366, 48–54. [Google Scholar] [CrossRef]
- Choudhary, S.; Solanki, A.; Upadhyay, S.; Singh, N.; Satsangi, V.R.; Shrivastav, R.; Dass, S. Nanostructured CuO/SrTiO3 Bilayered Thin Films for Photoelectrochemical Water Splitting. J Solid State Electrochem. 2013, 17, 2531–2538. [Google Scholar] [CrossRef]
- Ahmadi, M.; Seyed Dorraji, M.S.; Hajimiri, I.; Rasoulifard, M.H. The Main Role of CuO Loading against Electron-Hole Recombination of SrTiO3: Improvement and Investigation of Photocatalytic Activity, Modeling and Optimization by Response Surface Methodology. J. Photochem. Photobiol. A Chem. 2021, 404, 112886. [Google Scholar] [CrossRef]
- Bui, D.-N.; Mu, J.; Wang, L.; Kang, S.-Z.; Li, X. Preparation of Cu-Loaded SrTiO3 Nanoparticles and Their Photocatalytic Activity for Hydrogen Evolution from Methanol Aqueous Solution. Appl. Surf. Sci. 2013, 274, 328–333. [Google Scholar] [CrossRef]
- Bui, D.-N.; Kang, S.-Z.; Qin, L.; Li, X.-Q.; Mu, J. Relationship between the Electrochemical Behavior of Multiwalled Carbon Nanotubes (MWNTs) Loaded with CuO and the Photocatalytic Activity of Eosin Y-MWNTs-CuO System. Appl. Surf. Sci. 2013, 266, 288–293. [Google Scholar] [CrossRef]
- Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon Nanotubes--the Route Toward Applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Razali, M.H.; Mamat, M.; Kassim, K.; Amin, K.A.M. Physiochemical Properties of TiO2 Nanoparticle Loaded APTES-Functionalized MWCNTs Composites and Their Photocatalytic Activity with Kinetic Study. Arab. J. Chem. 2020, 13, 2785–2794. [Google Scholar] [CrossRef]
- El-Sayed, B.A.; Mohamed, W.A.A.; Galal, H.R.; Abd El-Bary, H.M.; Ahmed, M.A.M. Photocatalytic Study of Some Synthesized MWCNTs/TiO2 Nanocomposites Used in the Treatment of Industrial Hazard Materials. Egypt. J. Pet. 2019, 28, 247–252. [Google Scholar] [CrossRef]
- Askari, M.B.; Banizi, Z.T.; Soltani, S.; Seifi, M. Comparison of Optical Properties and Photocatalytic Behavior of TiO2/MWCNT, CdS/MWCNT and TiO2/CdS/MWCNT Nanocomposites. Optik 2018, 157, 230–239. [Google Scholar] [CrossRef]
- Ling Tan, T.; Bee Abd Hamid, S.; Wei Lai, C. Modification of Multi-Walled Carbon Nanotubes with Nanoparticles for High Photocatalytic Activity. CNANO 2015, 11, 504–508. [Google Scholar] [CrossRef]
- Marques Neto, J.; Bellato, C.; de Souza, C.; da Silva, R.; Rocha, P. Synthesis, Characterization and Enhanced Photocatalytic Activity of Iron Oxide/Carbon Nanotube/Ag-Doped TiO2 Nanocomposites. J. Braz. Chem. Soc. 2017, 28, 2301–2312. [Google Scholar] [CrossRef]
- Huang, Y.; Li, R.; Chen, D.; Hu, X.; Chen, P.; Chen, Z.; Li, D. Synthesis and Characterization of CNT/TiO2/ZnO Composites with High Photocatalytic Performance. Catalysts 2018, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Guo, J.; Yu, C.; Zhang, Z.; Sun, Z.; Piao, X. Fabrication of CNTs-Ag-TiO2 Ternary Structure for Enhancing Visible Light Photocatalytic Degradation of Organic Dye Pollutant. Mater. Chem. Phys. 2020, 248, 122873. [Google Scholar] [CrossRef]
- Yang, L.; Luo, Y.; Yang, L.; Luo, S.; Luo, X.; Dai, W.; Li, T.; Luo, Y. Enhanced Photocatalytic Activity of Hierarchical Titanium Dioxide Microspheres with Combining Carbon Nanotubes as “e-Bridge”. J. Hazard. Mater. 2019, 367, 550–558. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Lee, J.Y.; Bajaj, H.C.; Jo, W.K.; Tayade, R.J. Synthesis of Multiwall Carbon Nanotubes/TiO2 Nanotube Composites with Enhanced Photocatalytic Decomposition Efficiency. Catal. Today 2017, 282, 13–23. [Google Scholar] [CrossRef]
- Shafei, A.; Sheibani, S. Visible Light Photocatalytic Activity of Cu Doped TiO2-CNT Nanocomposite Powder Prepared by Sol–Gel Method. Mater. Res. Bull. 2019, 110, 198–206. [Google Scholar] [CrossRef]
- Xian, T.; Yang, H.; Di, L.; Ma, J.; Zhang, H.; Dai, J. Photocatalytic Reduction Synthesis of SrTiO3-Graphene Nanocomposites and Their Enhanced Photocatalytic Activity. Nanoscale Res. Lett. 2014, 9, 327. [Google Scholar] [CrossRef] [Green Version]
- Suresh, S.; Jayasingh, A.L.; Getu, K.W.; Seema, G.; Won, C.O.; Nor, A.H.; Mohd, R.J. Enhanced Photocatalytic Activity of rGO-CuO Nanocomposites for the Degradation of Organic Pollutants. Catalysts 2021, 11, 1008. [Google Scholar] [CrossRef]
- Ateia, M.; Apul, O.G.; Shimizu, Y.; Muflihah, A.; Yoshimura, C.; Karanfil, T. Elucidating Adsorptive Fractions of Natural Organic Matter on Carbon Nanotubes. Environ. Sci. 2017, 51, 7101–7110. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Pan, L.; Li, H.; Sun, Z.; Sun, C.; Tay, B.K. Carbon Nanotube–Zinc Oxide Electrode and Gel Polymer Electrolyte for Electrochemical Supercapacitors. J. Alloy. Compd. 2009, 480, L17–L19. [Google Scholar] [CrossRef]
- Puangpetch, T.; Sreethawong, T.; Yoshikawa, S.; Chavadej, S. Synthesis and photocatalytic activity in methyl orange degradation of mesoporous-assembled SrTiO3 nanocrystals prepared by sol–gel method with the aid of structure-directing surfactant. J. Mol. Catal. A: Chem. 2008, 287, 70–79. [Google Scholar] [CrossRef]
- Senobari, S.; Nezamzadeh-Ejhieh, A. A comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles: Designing the experiments, J. Mol. Li. 2018, 261, 208–217. [Google Scholar] [CrossRef]
- Song, S.; Xu, L.; He, Z.; Ying, H.; Chen, J.; Xiao, X.; Yan, B. Photocatalytic Degradation of C.I. Direct Red 23 in Aqueous Solutions under UV Irradiation Using SrTiO3/CeO2 Composite as the Catalyst. J. Hazard. Mater. 2008, 152, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Bandara, J.; Udawatta, C.P.K.; Rajapakse, C.S.K. Highly Stable CuO Incorporated TiO2 Catalyst for Photocatalytic Hydrogen Production from H2O. Photochem. Photobiol. Sci. 2005, 4, 857. [Google Scholar] [CrossRef]
- Choi, H.; Kang, M. Hydrogen Production from Methanol/Water Decomposition in a Liquid Photosystem Using the Anatase Structure of Cu Loaded TiO2. Int. J. Hydrog. Energy 2007, 32, 3841–3848. [Google Scholar] [CrossRef]
- Puangpetch, T.; Sreethawong, T.; Yoshikawa, S.; Chavadej, S. Hydrogen Production from Photocatalytic Water Splitting over Mesoporous-Assembled SrTiO3 Nanocrystal-Based Photocatalysts. J. Mol. Catal. Chem. 2009, 312, 97–106. [Google Scholar] [CrossRef]
- Kamal, P.S.; Insup, L.; Md, A.H.; Md, A.I. Enhanced Visible-Light Photocatalysis of Nanocomposites of Copper Oxide and Single-Walled Carbon Nanotubes for the Degradation of Methylene Blue. Catalysts 2020, 10, 297. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Chaoen, L.; Xuying, Z.; Qiang, W.; Xuemei, Q.; Xiantuo, C.; Tao, H.; Yan, C. Photocatalytic oxidation of gas-phase Hg0 by CuO/TiO2, Appl. Catal. B Environ. 2015, 176, 559–569. [Google Scholar] [CrossRef]
- Khodam, F.; Amani-Ghadim, H.R.; Aber, S.; Amani-Ghadim, A.R.; Ahadzadeh, I. Neodymium Doped Mixed Metal Oxide Derived from CoAl-Layered Double Hydroxide: Considerable Enhancement in Visible Light Photocatalytic Activity. J. Ind. Eng. Chem. 2018, 68, 311–324. [Google Scholar] [CrossRef]
- Injun, L.; Taeseong, J.; Junggi, K.; Suho, R.; Chulsu, K.; Yeji, L.; Youngmi, K.; Juhyun, L.; Misook, K. The relationship between photo-catalytic performance and optical property over Si-incorporated TiO2, J. Ind. Eng. Chem. 2008, 14, 869–873. [Google Scholar] [CrossRef]
- Sakar, M.; Mithun Prakash, R.; Do, T.O. Do Insights into the TiO2-Based Photocatalytic Systems and Their Mechanisms. Catalysts 2019, 9, 680. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Zhao, W.; Sun, Z.; Liu, X.; Shi, G.; Liu, Z.; Ni, D.; Ma, Z. Photocatalytic and Adsorption Property of ZnS–TiO2 /RGO Ternary Composites for Methylene Blue Degradation. Adsorp. Sci. Technol. 2019, 37, 764–776. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Schoonen, M.A.A. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. Am. Mineral. 2000, 85, 543–556. [Google Scholar] [CrossRef]
- Alessandra, M.; Roberto, A.; Andrea, M. Photocatalysis with Na4W10O32 in water system: Formation and reactivity of OH• radicals, J. Mol. Catal. A Chem. 2013, 372, 23–28. [Google Scholar] [CrossRef]
- Luisa, P.; Elena, S.; Annalis, M.; Nicola, M.; Claudia, S.; Alessandra, M. An advanced oxidation process by photoexcited heterogeneous sodium decatungstate for the degradation of drugs present in aqueous environment. Appl. Catal. B Environ. 2018, 239, 345–351. [Google Scholar] [CrossRef]
- Ahmadia, M.; Seyed, D.M.S.; Rasoulifarda, M.H.; Amani-Ghadim, A.R. The effective role of reduced-graphene oxide in visible light photocatalytic activity of wide band gap SrTiO3 semiconductor, Sep. Purif. Technol. 2019, 228, 115771. [Google Scholar] [CrossRef]
Catalysts | H (%) | k (min−1) | R2 |
---|---|---|---|
STO | 10.91 | 0.0412 × 10−2 | 0.926 |
STO/MWCNTs | 47.26 | 0.256 × 10−2 | 0.936 |
1% CuO/STO/MWCNTs | 56.08 | 0.349 × 10−2 | 0.984 |
3% CuO/STO/MWCNTs | 58.19 | 0.357 × 10−2 | 0.995 |
5% CuO/STO/MWCNTs | 71.22 | 0.525 × 10−2 | 0.989 |
Catalysts | Organic Pollutants | Conditions | H (%) | Ref. |
---|---|---|---|---|
CuO/rGO (graphene) | MB | MB (2.23 × 10−5 M), catalyst (1 g L−1), 100 W Xe lamp, 90 min. | 77.8% | [29] |
STO/rGO (graphene) | CIPRO (ciprofloxacin) | CIPRO (5 mg L−1), catalyst (1 g L−1), 40 W compact fluorescent lamp, 7 h. | 74.1% | [47] |
IBP (Ibprofen) | IBP (5 mg L−1), catalyst (1 g L−1), 40 W compact fluorescent lamp, 7 h. | 68.4% | ||
RhB | RhB (5 mg L−1), catalyst (1 g L−1), 40 W compact fluorescent lamp, 7 h. | 100% | ||
CNTs/Ag/TiO2 | MB | MB (10 mg L−1), catalyst (1 g L−1), halogen lamp, 3 h. | 80.8% | [24] |
5% CuO/STO/ MWCNTs | MB | MB (10 mg L−1), catalyst (1 g L−1), 500 W halogen lamp, 3 h. | 71.2% | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, X.T.; Bui, D.N.; Pham, V.K.; Pham, T.H.T.; Nguyen, T.T.L.; Chau, H.D.; Tran, T.K.N. Effect of CuO Loading on the Photocatalytic Activity of SrTiO3/MWCNTs Nanocomposites for Dye Degradation under Visible Light. Inorganics 2022, 10, 211. https://doi.org/10.3390/inorganics10110211
Mai XT, Bui DN, Pham VK, Pham THT, Nguyen TTL, Chau HD, Tran TKN. Effect of CuO Loading on the Photocatalytic Activity of SrTiO3/MWCNTs Nanocomposites for Dye Degradation under Visible Light. Inorganics. 2022; 10(11):211. https://doi.org/10.3390/inorganics10110211
Chicago/Turabian StyleMai, Xuan Truong, Duc Nguyen Bui, Van Khang Pham, Thi Ha Thanh Pham, Thi To Loan Nguyen, Hung Dung Chau, and Thi Kim Ngan Tran. 2022. "Effect of CuO Loading on the Photocatalytic Activity of SrTiO3/MWCNTs Nanocomposites for Dye Degradation under Visible Light" Inorganics 10, no. 11: 211. https://doi.org/10.3390/inorganics10110211
APA StyleMai, X. T., Bui, D. N., Pham, V. K., Pham, T. H. T., Nguyen, T. T. L., Chau, H. D., & Tran, T. K. N. (2022). Effect of CuO Loading on the Photocatalytic Activity of SrTiO3/MWCNTs Nanocomposites for Dye Degradation under Visible Light. Inorganics, 10(11), 211. https://doi.org/10.3390/inorganics10110211