Excellent Adsorption of Dyes via MgTiO3@g-C3N4 Nanohybrid: Construction, Description and Adsorption Mechanism
Abstract
:1. Introduction
2. Results and Discussion
2.1. MgTiO3@g-C3N4 Nanohybrids Structure Characteristics
2.2. Adsorption Studies
2.2.1. Effect of Initial Concentration and pH Changing
2.2.2. The Impact of Equilibrium Contacts Time and Adsorption Kinetic Studies
2.2.3. Intra-Particle Diffusion Study for Nanohybrid
2.2.4. MgTiO3@g-C3N4 Nanohybrids Adsorption Isotherm
2.2.5. RhB Dye Adsorption Mechanism
2.3. MgTiO3@g-C3N4 Nanohybrid Regeneration
2.4. Adsorption Capability of MgTiO3@g-C3N4 Nanohybrids for other Color Contaminants
3. Experimental Section
3.1. Building Up of MgTiO3@g-C3N4 Nanomaterials
3.2. Characterization
3.3. RhB Dye Removal Experiments
3.4. Regeneration Experiments
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, C.; Maurer, C.; Wang, Y.; Xue, S.; Davis, D.L. Water pollution and human health in China. Environ. Health Perspect. 1999, 107, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Elamin, M.R.; Abdulkhair, B.Y.; Elzupir, A.O. Removal of ciprofloxacin and indigo carmine from water by carbon nanotubes fabricated from a low-cost precursor: Solution parameters and recyclability. Ain Shams Eng. J. 2023, 14, 101844. [Google Scholar] [CrossRef]
- Bhattacharjee, R.; Mitra, T.; Mitra, P.; Biswas, S.; Ghosh, S.; Chattopadhyay, S.; Malik, S.; Dey, A. Effective Materials in the Photocatalytic Treatment of Dyestuffs and Stained Wastewater. In Trends and Contemporary Technologies for Photocatalytic Degradation of Dyes; Springer: Berlin/Heidelberg, Germany, 2022; pp. 173–200. [Google Scholar]
- Idriss, H. Decolorization of malachite green in aqueous solution via MgO nanopowder. J. Optoelectron. Biomed. Mater. Vol. 2021, 13, 183–192. [Google Scholar]
- Elamin, M.R.; Ibnaouf, K.H.; Elamin, N.Y.; Adam, F.A.; Alolayan, A.H.; Abdulkhair, B.Y. Spontaneous Adsorption and Efficient Photodegradation of Indigo Carmine under Visible Light by Bismuth Oxyiodide Nanoparticles Fabricated Entirely at Room Temperature. Inorganics 2022, 10, 65. [Google Scholar] [CrossRef]
- Farnum, J.L. Examining the Effects of Synthetic Dye Yellow No. 5 (Tartrazine) Exposure on Mouse Neuro2A Neurons In Vitro. Bachelor’s Thesis, University of Central Florida, Orlando, FL, USA, 2022. [Google Scholar]
- Adam, F.A.; Ghoniem, M.; Diawara, M.; Rahali, S.; Abdulkhair, B.Y.; Elamin, M.; Aissa, M.A.B.; Seydou, M. Enhanced adsorptive removal of indigo carmine dye by bismuth oxide doped MgO based adsorbents from aqueous solution: Equilibrium, kinetic and computational studies. RSC Adv. 2022, 12, 24786–24803. [Google Scholar] [CrossRef]
- Almufarij, R.S.; Abdulkhair, B.Y.; Salih, M.; Aldosari, H.; Aldayel, N.W. Optimization, Nature, and Mechanism Investigations for the Adsorption of Ciprofloxacin and Malachite Green onto Carbon Nanoparticles Derived from Low-Cost Precursor via a Green Route. Molecules 2022, 27, 4577. [Google Scholar] [CrossRef]
- Yusuf, T.L.; Orimolade, B.O.; Masekela, D.; Mamba, B.; Mabuba, N. The application of photoelectrocatalysis in the degradation of rhodamine B in aqueous solutions: A review. RSC Adv. 2022, 12, 26176–26191. [Google Scholar] [CrossRef]
- Saigl, Z.M. Various Adsorbents for Removal of Rhodamine B Dye: A Review. Indones. J. Chem. 2021, 21, 1039–1056. [Google Scholar] [CrossRef]
- Al-Gheethi, A.A.; Azhar, Q.M.; Kumar, P.S.; Yusuf, A.A.; Al-Buriahi, A.K.; Mohamed, R.M.S.R.; Al-Shaibani, M.M. Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review. Chemosphere 2022, 287, 132080. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, M.; Lu, W.; Li, L.; Li, J.; Chen, M.; Wang, Q.; Qin, G.; Cao, D. Rhodamine-based chemosensor for Sn2+ detection and its application in nanofibrous film and bioimaging. Anal. Bioanal. Chem. 2022, 414, 2009–2019. [Google Scholar] [CrossRef]
- Saravanan, S.; Kumar, P.S.; Chitra, B.; Rangasamy, G. Biodegradation of textile dye Rhodamine-B by Brevundimonas diminuta and screening of their breakdown metabolites. Chemosphere 2022, 308, 136266. [Google Scholar] [CrossRef] [PubMed]
- Manohar, M.; Paladhi, A.G.; Jacob, S.; Vallinayagam, S. ZnO Nanocomposites in Dye Degradation. In Advanced Oxidation Processes in Dye-Containing Wastewater; Springer: Berlin/Heidelberg, Germany, 2022; pp. 317–341. [Google Scholar]
- Ranjan Mishra, S.; Gadore, V.; Ahmaruzzaman, M. Nanostructured Composite Materials for Treatment of Dye Contaminated Water. In Nanohybrid Materials for Water Purification; Springer: Berlin/Heidelberg, Germany, 2022; pp. 97–120. [Google Scholar]
- Birniwa, A.H.; Abubakar, A.S.; Mahmud, H.N.M.E.; Kutty, S.R.M.; Jagaba, A.H.; Abdullahi, S.S.A.; Zango, Z.U. Application of Agricultural Wastes for Cationic Dyes Removal from Wastewater. In Textile Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 2022; pp. 239–274. [Google Scholar]
- Sengupta, A.; Sarkar, A. Green synthesis of nanoparticles: Prospect for sustainable efficient photocatalytic dye degradation. In Photocatalytic Degradation of Dyes; Elsevier: Amsterdam, The Netherlands, 2021; pp. 405–420. [Google Scholar]
- Ntakadzeni, M. Molybdenum Sulfide Nanostructures: Synthesis and Their Catalytic Applications. Ph.D. Thesis, University of Johannesburg (South Africa), Johannesburg, South Africa, 2017. [Google Scholar]
- Skjolding, L.M.; Dyhr, K.; Köppl, C.; McKnight, U.; Bauer-Gottwein, P.; Mayer, P.; Bjerg, P.; Baun, A. Assessing the aquatic toxicity and environmental safety of tracer compounds Rhodamine B and Rhodamine WT. Water Res. 2021, 197, 117109. [Google Scholar] [CrossRef] [PubMed]
- Shindhal, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H.H.; Guo, W.; Ng, H.Y.; Taherzadeh, M.J. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 2021, 12, 70–87. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.; Reshma, B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 2021, 280, 130595. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environ. Pollut. 2021, 280, 116995. [Google Scholar] [CrossRef]
- Shamsudin, R. Kenaf Bast Fiber Filter Cartridge for Removal of Heavy Metals and Dyes in Aqueous Solution. Ph.D. Thesis, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia, 2016. [Google Scholar]
- Rashed, M.N. Adsorption technique for the removal of organic pollutants from water and wastewater. Org. Pollut.-Monit. Risk Treat. 2013, 7, 167–194. [Google Scholar]
- Elamin, M.R.; Abdulkhair, B.Y.; Elzupir, A.O. Insight to aspirin sorption behavior on carbon nanotubes from aqueous solution: Thermodynamics, kinetics, influence of functionalization and solution parameters. Sci. Rep. 2019, 9, 12795. [Google Scholar] [CrossRef] [Green Version]
- Elamin, M.R.; Elzupir, A.O.; Abdulkhair, B.Y. Monitoring; Management. Synthesis and characterization of functionalized carbon nanofibers for efficient removal of highly water-soluble dextromethorphan and guaifenesin from environmental water samples. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100397. [Google Scholar]
- Shi, C.; Yu, S.; Wang, L.; Zhang, X.; Lin, X.; Li, C. Degradation of tetracycline/oxytetracycline by electrospun aligned polyacrylonitrile-based carbon nanofibers as anodic electrocatalysis microfiltration membrane. J. Environ. Chem. Eng. 2021, 9, 106540. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, J.; Zhou, Y.; Liu, Y. Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut. 2019, 252, 352–365. [Google Scholar] [CrossRef]
- Moosavi, S.; Lai, C.W.; Gan, S.; Zamiri, G.; Akbarzadeh Pivehzhani, O.; Johan, M.R. Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega 2020, 5, 20684–20697. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, T.R.; Prelot, B. Adsorption processes for the removal of contaminants from wastewater: The perspective role of nanomaterials and nanotechnology. In Nanomaterials for the Detection and Removal of Wastewater Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 161–222. [Google Scholar]
- Mary, B.C.J.; Vijaya, J.J.; Bououdina, M.; Khezami, L.; Modwi, A.; Ismail, M.; Bellucci, S. On this page. Adsorpt. Sci. Technol. 2022, 2, 3. [Google Scholar]
- Al-Awaji, N.; Boukriba, M.; Albadri, A.; Aissa, M.A.B.; Bououdina, M.; Modwi, A. Green Ca-Loaded MgO Nanoparticles as an Efficient Adsorbent for Organic Hazardous Dyes. J. Nanomater. 2022, 2022, 5062752. [Google Scholar] [CrossRef]
- Ali, M.; Modwi, A.; Idriss, H.; Aldaghri, O.; Ismail, M.; Ibnaouf, K. Detoxification of Pb (II) from aquatic media via CaMgO2@ g-C3N4 nanocomposite. Mater. Lett. 2022, 322, 132501. [Google Scholar] [CrossRef]
- Aldaghri, O.; Modwi, A.; Idriss, H.; Ali, M.; Ibnaouf, K. Cleanup of Cd II from water media using Y2O3@ gC3N4 (YGCN) nanocomposite. Diam. Relat. Mater. 2022, 129, 109315. [Google Scholar] [CrossRef]
- Khezami, L.; Aissa, M.A.B.; Modwi, A.; Ismail, M.; Guesmi, A.; Algethami, F.K.; Ticha, M.B.; Assadi, A.A.; Nguyen-Tri, P. Harmonizing the photocatalytic activity of g-C3N4 nanosheets by ZrO2 stuffing: From fabrication to experimental study for the wastewater treatment. Biochem. Eng. J. 2022, 182, 108411. [Google Scholar] [CrossRef]
- Modwi, A.; Khezami, L.; Ghoniem, M.; Nguyen-Tri, P.; Baaloudj, O.; Guesmi, A.; AlGethami, F.; Amer, M.; Assadi, A. Superior removal of dyes by mesoporous MgO/g-C3N4 fabricated through ultrasound method: Adsorption mechanism and process modeling. Environ. Res. 2022, 205, 112543. [Google Scholar] [CrossRef]
- Yu, Y.; Yan, W.; Wang, X.; Li, P.; Gao, W.; Zou, H.; Wu, S.; Ding, K. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv. Mater. 2018, 30, 1705060. [Google Scholar] [CrossRef]
- Wu, Z.; He, X.; Gao, Z.; Xue, Y.; Chen, X.; Zhang, L. Synthesis and characterization of Ni-doped anatase TiO2 loaded on magnetic activated carbon for rapidly removing triphenylmethane dyes. Environ. Sci. Pollut. Res. 2021, 28, 3475–3483. [Google Scholar] [CrossRef]
- Vesali-Kermani, E.; Habibi-Yangjeh, A.; Ghosh, S. Visible-light-induced nitrogen photofixation ability of g-C3N4 nanosheets decorated with MgO nanoparticles. J. Ind. Eng. Chem. 2020, 84, 185–195. [Google Scholar] [CrossRef]
- Yue, Y.; Zhang, P.; Wang, W.; Cai, Y.; Tan, F.; Wang, X.; Qiao, X.; Wong, P.K. Enhanced dark adsorption and visible-light-driven photocatalytic properties of narrower-band-gap Cu2S decorated Cu2O nanocomposites for efficient removal of organic pollutants. J. Hazard. Mater. 2020, 384, 121302. [Google Scholar] [CrossRef] [PubMed]
- Modwi, A.; Abbo, M.; Hassan, E.; Houas, A. Effect of annealing on physicochemical and photocatalytic activity of Cu 5% loading on ZnO synthesized by sol–gel method. J. Mater. Sci. Mater. Electron. 2016, 27, 12974–12984. [Google Scholar] [CrossRef]
- Li, Y.; Lv, K.; Ho, W.; Dong, F.; Wu, X.; Xia, Y. Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): An efficient visible-light-driven Z-scheme hybridized photocatalyst. Appl. Catal. B Environ. 2017, 202, 611–619. [Google Scholar] [CrossRef]
- Tella, E.; Panagiotou, G.; Petsi, T.; Bourikas, K.; Kordulis, C.; Lycourghiotis, A. The mechanism of retention of vanadium oxo-species at the “titanium oxide/aqueous solution” interface. Glob NEST J. 2010, 12, 231–238. [Google Scholar]
- Cardenas Peña, A.M.; Ibáñez Cornejo, J.G.; Vásquez Medrano, R.C. Determination of the Point of Zero Charge for Electrocoagulation Precipitates from an Iron Anode; Universidad Iberoamericana: Mexico City, Mexico, 2012. [Google Scholar]
- Nasiruddin Khan, M.; Sarwar, A. Determination of points of zero charge of natural and treated adsorbents. Surf. Rev. Lett. 2007, 14, 461–469. [Google Scholar] [CrossRef]
- Mahmood, T.; Saddique, M.T.; Naeem, A.; Westerhoff, P.; Mustafa, S.; Alum, A. Comparison of different methods for the point of zero charge determination of NiO. Ind. Eng. Chem. Res. 2011, 50, 10017–10023. [Google Scholar] [CrossRef]
- Elamin, M.R.; Abdulkhair, B.Y.; Algethami, F.K.; Khezami, L. Linear and nonlinear investigations for the adsorption of paracetamol and metformin from water on acid-treated clay. Sci. Rep. 2021, 11, 13606. [Google Scholar] [CrossRef]
- Guarín Romero, J.R.; Moreno-Piraján, J.C.; Giraldo Gutierrez, L. Kinetic and equilibrium study of the adsorption of CO2 in ultramicropores of resorcinol-formaldehyde aerogels obtained in acidic and basic medium. C 2018, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- An, B. Cu (II) and As (V) adsorption kinetic characteristic of the multifunctional amino groups in chitosan. Processes 2020, 8, 1194. [Google Scholar] [CrossRef]
- Ho, Y.; McKay, G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng. 1998, 76, 822–827. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Abdulkhair, B.Y.; Elamin, M.R. Low-Cost Carbon Nanoparticles for Removing Hazardous Organic Pollutants from Water: Complete Remediation Study and Multi-Use Investigation. Inorganics 2022, 10, 136. [Google Scholar] [CrossRef]
- Liu, L.; Fan, S.; Li, Y. Removal behavior of methylene blue from aqueous solution by tea waste: Kinetics, isotherms and mechanism. Int. J. Environ. Res. Public Health 2018, 15, 1321. [Google Scholar] [CrossRef] [Green Version]
- Saleh, T.A.; Ali, I. Synthesis of polyamide grafted carbon microspheres for removal of rhodamine B dye and heavy metals. J. Environ. Chem. Eng. 2018, 6, 5361–5368. [Google Scholar] [CrossRef]
- Ouachtak, H.; El Haouti, R.; El Guerdaoui, A.; Haounati, R.; Amaterz, E.; Addi, A.A.; Akbal, F.; Taha, M.L. Experimental and molecular dynamics simulation study on the adsorption of Rhodamine B dye on magnetic montmorillonite composite γ-Fe2O3@ Mt. J. Mol. Liq. 2020, 309, 113142. [Google Scholar] [CrossRef]
- Sirajudheen, P.; Meenakshi, S. Encapsulation of Zn–Fe layered double hydroxide on activated carbon and its litheness in tuning anionic and rhoda dyes through adsorption mechanism. Asia-Pacific J. Chem. Eng. 2020, 15, e2479. [Google Scholar] [CrossRef]
- Albanio, I.I.; Muraro, P.C.L.; da Silva, W.L. Rhodamine B dye adsorption onto biochar from olive biomass waste. Water Air Soil Pollut. 2021, 232, 214. [Google Scholar] [CrossRef]
- Hoang, L.P.; Van, H.T.; Nguyen, T.T.H.; Nguyen, V.Q.; Quang Thang, P. Coconut shell activated carbon/CoFe2O4 composite for the removal of rhodamine B from aqueous solution. J. Chem. 2020, 2020, 9187960. [Google Scholar] [CrossRef]
- Yue, X.; Zhao, J.; Shi, H.; Chi, Y.; Salam, M. Preparation of composite adsorbents of activated carbon supported MgO/MnO2 and adsorption of Rhodamine B. Water Sci. Technol. 2020, 81, 906–914. [Google Scholar] [CrossRef]
Pseudo-First-Order Model | Elovich Model | |||||
qe(Cal)b (mg g−1) | K1 × 103 (min−1) | r2 | β × 102 (g mg−1) | α | r2 | |
RhB | 16.96 | 4.63 | 0.5701 | 0.241 | 3.79 × 106 | 0.7310 |
Pseudo-Second-Order Model | ||||||
RhB | qe(Exp)a (mg g−1) | t1/2 (min) | h0 (mg g−1.min−1) | qe(Cal)b (mg g−1) | K2 × 103 (g mg−1 min−1) | r2 |
85 | 2.99 | 27.48 | 82.24 | 4.06 | 1.000 |
Intra-Particle Diffusion/Transport Model | ||||||||
---|---|---|---|---|---|---|---|---|
kdif(mg.g−1 min−1/2) | C1 | r2 | kdif(mg g−1 min−1/2) | C2 | r2 | kdif(mg g−1 min−1/2) | C3 | r2 |
17.5340 | 5.06 | 0.9603 | 0.4543 | 74.82 | 0.9940 | 0.0093 | 81.66 | 0.9838 |
Equilibrium Model | Parameters | RhB |
---|---|---|
Langmuir | qm (mg.g−1) | 232.02 |
KL (mg.g−1) | 0.0047 | |
RL (L.mg−1) | 0.4788 | |
R2 | 0.9991 | |
Freundlich | n | 2.06 |
KF (L.mg−1) | 88.64 | |
R2 | 96488 | |
Temkin | B (J.mol−1) | 60.18 |
KT (L.mg−1) | 17.65 | |
R2 | 0.9816 |
Nanomaterial | Adsorption Capacity (mg. g−1) | Reference |
---|---|---|
MgTiO3@g-C3N4 nanohybrids | 223 | This study |
Carbon microspheres | 19.9 | [54] |
Fe2O4-montmorillonite nanocomposite | 209 | [55] |
Zn–Fe layered double hydroxide-activated carbon nanocomposite | 97.0 | [56] |
Activated carbon | 264 | [57] |
Carbon–cobalt ferrite | 94.1 | [58] |
activated carbon-supported MgO/MnO2 | 16.2 | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modwi, A.; Elamin, M.R.; Idriss, H.; Elamin, N.Y.; Adam, F.A.; Albadri, A.E.; Abdulkhair, B.Y. Excellent Adsorption of Dyes via MgTiO3@g-C3N4 Nanohybrid: Construction, Description and Adsorption Mechanism. Inorganics 2022, 10, 210. https://doi.org/10.3390/inorganics10110210
Modwi A, Elamin MR, Idriss H, Elamin NY, Adam FA, Albadri AE, Abdulkhair BY. Excellent Adsorption of Dyes via MgTiO3@g-C3N4 Nanohybrid: Construction, Description and Adsorption Mechanism. Inorganics. 2022; 10(11):210. https://doi.org/10.3390/inorganics10110210
Chicago/Turabian StyleModwi, Abueliz, Mohamed R. Elamin, Hajo Idriss, Nuha Y. Elamin, Fatima A. Adam, Abuzar E. Albadri, and Babiker Y. Abdulkhair. 2022. "Excellent Adsorption of Dyes via MgTiO3@g-C3N4 Nanohybrid: Construction, Description and Adsorption Mechanism" Inorganics 10, no. 11: 210. https://doi.org/10.3390/inorganics10110210
APA StyleModwi, A., Elamin, M. R., Idriss, H., Elamin, N. Y., Adam, F. A., Albadri, A. E., & Abdulkhair, B. Y. (2022). Excellent Adsorption of Dyes via MgTiO3@g-C3N4 Nanohybrid: Construction, Description and Adsorption Mechanism. Inorganics, 10(11), 210. https://doi.org/10.3390/inorganics10110210