Hydrothermal Synthesis of MnO2/Reduced Graphene Oxide Composite for 4-Nitrophenol Sensing Applications
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of Graphene Oxide (GO)
2.2. Synthesis of MnO2/rGO
2.3. Fabrication of Electrochemical Sensor
3. Results and Discussion
3.1. General Characterization
3.2. Electrochemical Performance
Material | LoD (µM) | Sensitivity (µA/µMcm2) | References |
---|---|---|---|
α-MnO2 nanotube/GCE | 100 | 0.19 | [39] |
Mg(Ni)FeO/CPE | 0.2 | 0.81 | [40] |
ZnO/GCE | 13 | 0.404 | [41] |
Nanogold/GCE | 8 | - | [42] |
MWCNT/GCE | 0.4 | - | [43] |
Silver particles/GCE | 0.5 | - | [44] |
palladium-graphene composite/poly(N-isopropylacrylamide) | 0.1 | - | [45] |
SnO2@ZIF-8/gC3N4 nanohybrids | 0.565 | 2.63 | [46] |
MWCNTs/MnO2 | 0.64 | 0.186 | [47] |
Ti3C2TX/GR/GCE | 0.16 | - | [48] |
P-doped Fe/Fe3O4@C | 0.462 | - | [49] |
Ti3C2Tx MXene | 0.11 | 1.22 | [50] |
Bi2O3@MWCNTs | 0.1 | - | [51] |
MnO2/rGO/GCE | 0.09 | 0.657 | Praveen et al. |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, K.; Ibrahim, A.A.; Umar, A.; Kumar, A.; Chaudhary, G.R.; Singh, S.; Mehta, S.K. Synthesis of CeO2–ZnO Nanoellipsoids as Potential Scaffold for the Efficient Detection of 4-Nitrophenol. Sens. Actuators B Chem. 2014, 202, 1044–1050. [Google Scholar] [CrossRef]
- Ahmad, N.; Al-Fatesh, A.S.; Wahab, R.; Alam, M.; Fakeeha, A.H. Synthesis of Silver Nanoparticles Decorated on Reduced Graphene Oxide Nanosheets and Their Electrochemical Sensing towards Hazardous 4-Nitrophenol. J. Mater. Sci. Mater. Electron. 2020, 31, 11927–11937. [Google Scholar] [CrossRef]
- Al-Kahtani, A.A.; Almuqati, T.; Alhokbany, N.; Ahamad, T.; Naushad, M.; Alshehri, S.M. A Clean Approach for the Reduction of Hazardous 4-Nitrophenol Using Gold Nanoparticles Decorated Multiwalled Carbon Nanotubes. J. Clean. Prod. 2018, 191, 429–435. [Google Scholar] [CrossRef]
- Dai, H.; Deng, Z.; Zeng, Y.; Zhang, J.; Yang, Y.; Ma, Q.; Hu, W.; Guo, L.; Li, L.; Wan, S.; et al. Highly Sensitive Determination of 4-Nitrophenol with Coumarin-Based Fluorescent Molecularly Imprinted Poly (Ionic Liquid). J. Hazard. Mater. 2020, 398, 122854. [Google Scholar] [CrossRef]
- Ding, Q.; Kang, Z.; Cao, L.; Lin, M.; Lin, H.; Yang, D.-P. Conversion of Waste Eggshell into Difunctional Au/CaCO3 Nanocomposite for 4-Nitrophenol Electrochemical Detection and Catalytic Reduction. Appl. Surf. Sci. 2020, 510, 145526. [Google Scholar] [CrossRef]
- Jeyapragasam, T. Molybdenum Disulfide-Based Modifier for Electrochemical Detection of 4-Nitrophenol. Ionics 2018, 24, 4033–4041. [Google Scholar] [CrossRef]
- Lu, W.; Ning, R.; Qin, X.; Zhang, Y.; Chang, G.; Liu, S.; Luo, Y.; Sun, X. Synthesis of Au Nanoparticles Decorated Graphene Oxide Nanosheets: Noncovalent Functionalization by TWEEN 20 in Situ Reduction of Aqueous Chloroaurate Ions for Hydrazine Detection and Catalytic Reduction of 4-Nitrophenol. J. Hazard. Mater. 2011, 197, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Manjula, N.; Chen, S.-M. Simple Strategy Synthesis of Manganese Cobalt Oxide Anchored on Graphene Oxide Composite as an Efficient Electrocatalyst for Hazardous 4-Nitrophenol Detection in Toxic Tannery Waste. Microchem. J. 2021, 168, 106514. [Google Scholar] [CrossRef]
- Padilla-Sánchez, J.A.; Plaza-Bolaños, P.; Romero-González, R.; Garrido-Frenich, A.; Martínez Vidal, J.L. Application of a Quick, Easy, Cheap, Effective, Rugged and Safe-Based Method for the Simultaneous Extraction of Chlorophenols, Alkylphenols, Nitrophenols and Cresols in Agricultural Soils, Analyzed by Using Gas Chromatography–Triple Quadrupole-Mass Spectrometry/Mass Spectrometry. J. Chromatogr. A 2010, 1217, 5724–5731. [Google Scholar]
- El-Shahawi, M.S.; Othman, A.M.; El-Houseini, M.E.; Nashed, B.; Elsofy, M.S. Spectrofluorimetric Method for Measuring the Activity of the Enzyme α-l-Fucosidase Using the Ion Associate of 2-Chloro-4-Nitro Phenol–Rhodamine-B. Talanta 2009, 80, 19–23. [Google Scholar] [CrossRef]
- Salcedo, G.M.; Kupski, L.; Degang, L.; Marube, L.C.; Caldas, S.S.; Primel, E.G. Determination of Fifteen Phenols in Wastewater from Petroleum Refinery Samples Using a Dispersive Liquid—Liquid Microextraction and Liquid Chromatography with a Photodiode Array Detector. Microchem. J. 2019, 146, 722–728. [Google Scholar] [CrossRef]
- Bogireddy, N.K.R.; Cruz Silva, R.; Valenzuela, M.A.; Agarwal, V. 4-Nitrophenol Optical Sensing with N Doped Oxidized Carbon Dots. J. Hazard. Mater. 2020, 386, 121643. [Google Scholar] [CrossRef] [PubMed]
- Konstantinou, G.N. Enzyme-Linked Immunosorbent Assay (ELISA). In Food Allergens: Methods and Protocols; Lin, J., Alcocer, M., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; pp. 79–94. ISBN 978-1-4939-6925-8. [Google Scholar]
- Chu, Y.Y.; Qian, Y.; Wang, W.J.; Deng, X.L. A Dual-Cathode Electro-Fenton Oxidation Coupled with Anodic Oxidation System Used for 4-Nitrophenol Degradation. J. Hazard. Mater. 2012, 199–200, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, W.; Zhang, Z.; Shi, Z.; Liu, W. Green analytical method for the sensitive determination of mononitrophenol isomers by dynamic pH junction cappilary electrophoresis. J. Liq. Chromatogr. Relat. 2014, 37, 1145–1162. [Google Scholar] [CrossRef]
- Hao, T.; Wei, X.; Nie, Y.; Xu, Y.; Yan, Y.; Zhou, Z. An Eco-Friendly Molecularly Imprinted Fluorescence Composite Material Based on Carbon Dots for Fluorescent Detection of 4-Nitrophenol. Microchim Acta 2016, 183, 2197–2203. [Google Scholar] [CrossRef]
- Neng, N.R.; Nogueira, J.M.F. Determination of Phenol Compounds In Surface Water Matrices by Bar Adsorptive Microextraction-High Performance Liquid Chromatography-Diode Array Detection. Molecules 2014, 19, 9369–9379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Zhao, H.; Liang, J.; Yue, L.; Li, T.; Luo, Y.; Liu, Q.; Lu, S.; Asiri, A.M.; Gong, Z.; et al. Anodic Oxidation for the Degradation of Organic Pollutants: Anode Materials, Operating Conditions and Mechanisms. A Mini Review. Electrochem. Commun. 2021, 123, 106912. [Google Scholar] [CrossRef]
- Chang, G.; Luo, Y.; Lu, W.; Qin, X.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Ag Nanoparticles Decorated Polyaniline Nanofibers: Synthesis, Characterization, and Applications toward Catalytic Reduction of 4-Nitrophenol and Electrochemical Detection of H2O2 and Glucose. Catal. Sci. Technol. 2012, 2, 800–806. [Google Scholar] [CrossRef]
- Manjula, N.; Chen, S.-M. Electrochemical Sensors for β-Adrenoceptor Agonist Isoprenaline Analysis in Human Urine and Serum Samples Using Manganese Cobalt Oxide-Modified Glassy Carbon Electrode. New J. Chem. 2021, 45, 9084–9095. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Karimi, F.; Fu, L.; Sanati, A.L.; Alizadeh, M.; Karaman, C.; Orooji, Y. Cyanazine Herbicide Monitoring as a Hazardous Substance by a DNA Nanostructure Biosensor. J. Hazard. Mater. 2022, 423, 127058. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Khataee, A.; Karimi, F.; Baghayeri, M.; Fu, L.; Rouhi, J.; Karaman, C.; Karaman, O.; Boukherroub, R. A Green and Sensitive Guanine-Based DNA Biosensor for Idarubicin Anticancer Monitoring in Biological Samples: A Simple and Fast Strategy for Control of Health Quality in Chemotherapy Procedure Confirmed by Docking Investigation. Chemosphere 2022, 291, 132928. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Maleh, H.; Orooji, Y.; Karimi, F.; Alizadeh, M.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K.; et al. A Critical Review on the Use of Potentiometric Based Biosensors for Biomarkers Detection. Biosens. Bioelectron. 2021, 184, 113252. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.; Shinde, M.A.; Kim, H. Molybdenum Disulfide/Reduced Graphene Oxide: Progress in Synthesis and Electro-Catalytic Properties for Electrochemical Sensing and Dye Sensitized Solar Cells. Microchem. J. 2021, 169, 106583. [Google Scholar] [CrossRef]
- Ahmad, K.; Kim, H. Fabrication of Nitrogen-Doped Reduced Graphene Oxide Modified Screen Printed Carbon Electrode (N-RGO/SPCE) as Hydrogen Peroxide Sensor. Nanomaterials 2022, 12, 2443. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.; Kumar, P.; Mobin. Hydrothermally grown novel pyramids of the CaTiO3 perovskite as an efficient electrode modifier for sensing applications. Mater. Adv. 2020, 1, 2003–2009. [Google Scholar] [CrossRef]
- Mohammad, A.; Ahmad, K.; Rajak, R.; Mobin, S.M. Binder Free Modification of Glassy Carbon Electrode by Employing Reduced Graphene Oxide/ZnO Composite for Voltammetric Determination of Certain Nitroaromatics. Electroanalysis 2018, 30, 274–282. [Google Scholar] [CrossRef]
- Khan, M.Q.; Ahmad, K.; Alsalme, A.; Kim, H. Hydrothermal Synthesis of Nanostructured NiO for Hydrazine Sensing Application. Mater. Chem. Phys. 2022, 289, 126463. [Google Scholar] [CrossRef]
- Abaker, M.; Dar, G.N.; Umar, A.; Zaidi, S.A.; Ibrahim, A.A.; Baskoutas, S.; Al-Hajry, A. CuO Nanocubes Based Highly-Sensitive 4-Nitrophenol Chemical Sensor. Sci. Adv. Mater. 2012, 4, 893–900. [Google Scholar] [CrossRef]
- Ahmad, K.; Mobin, S.M. Shape Controlled Synthesis of High Surface Area MgO Microstructures for Highly Efficient Congo Red Dye Removal and Peroxide Sensor. J. Environ. Chem. Eng. 2019, 7, 103347. [Google Scholar] [CrossRef]
- Ahmad, K.; Mohammad, A.; Mathur, P.; Mobin, S.M. Preparation of SrTiO3 Perovskite Decorated RGO and Electrochemical Detection of Nitroaromatics. Electrochim. Acta 2016, 215, 435–446. [Google Scholar] [CrossRef]
- Ahmad, K.; Mohammad, A.; Mobin, S.M. Hydrothermally Grown α-MnO2 Nanorods as Highly Efficient Low Cost Counter-Electrode Material for Dye-Sensitized Solar Cells and Electrochemical Sensing Applications. Electrochim. Acta 2017, 252, 549–557. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, B.; Shao, Q.; Feng, Y.; Xiong, L.; Peng, Y.; Huang, X. Defect Engineering of Palladium–Tin Nanowires Enables Efficient Electrocatalysts for Fuel Cell Reactions. Nano Lett. 2019, 19, 6894–6903. [Google Scholar] [CrossRef] [PubMed]
- Cheemalapati, S.; Palanisamy, S.; Mani, V.; Chen, S.-M. Simultaneous Electrochemical Determination of Dopamine and Paracetamol on Multiwalled Carbon Nanotubes/Graphene Oxide Nanocomposite-Modified Glassy Carbon Electrode. Talanta 2013, 117, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, N.; Tiwari, I.; Foster, C.W.; Banks, C.E. Highly Sensitive Amperometric Sensing of Nitrite Utilizing Bulk-Modified MnO2 Decorated Graphene Oxide Nanocomposite Screen-Printed Electrodes. Electrochim. Acta 2017, 227, 255–266. [Google Scholar] [CrossRef]
- Ahmad, K.; Mobin, S.M. Construction of polyanilne/ITO electrode for electrochemical sensor applications. Mater. Res. Express 2019, 6, 085508. [Google Scholar] [CrossRef]
- Ahmad, K.; Mohammad, A.; Ansari, S.N.; Mobin, S.M. Construction of graphene oxide sheets based modified glassy carbon electrode (GO/GCE) for the highly sensitive detection of nitrobenzene. Mater. Res. Express 2018, 5, 075601. [Google Scholar] [CrossRef]
- Ahmad, K.; Kumar, P.; Mobin, S.M. A Highly Sensitive and Selective Hydroquinone Sensor Based on a Newly Designed N-RGO/SrZrO3 Composite. Nanoscale Adv. 2020, 2, 502–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Wang, Q.; Umar, A.; Sun, S.; Huang, L.; Wang, J.; Gao, Y. Highly Sensitive p -Nitrophenol Chemical Sensor Based on Crystalline α-MnO2 Nanotubes. New J. Chem. 2014, 38, 4420–4426. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Ding, Y.; Luo, L.; Liu, X.; Zhang, Y. Determination of P-Nitrophenol on Carbon Paste Electrode Modified with a Nanoscaled Compound Oxide Mg(Ni)FeO. J. Appl. Electrochem. 2013, 43, 679–687. [Google Scholar] [CrossRef]
- Sinhamahapatra, A.; Bhattacharjya, D.; Yu, J.-S. Green Fabrication of 3-Dimensional Flower-Shaped Zinc Glycerolate and ZnO Microstructures for p -Nitrophenol Sensing. RSC Adv. 2015, 5, 37721–37728. [Google Scholar] [CrossRef]
- Chu, L.; Han, L.; Zhang, X. Electrochemical Simultaneous Determination of Nitrophenol Isomers at Nano-Gold Modified Glassy Carbon Electrode. J. Appl. Electrochem. 2011, 41, 687–694. [Google Scholar] [CrossRef]
- Yang, C. Electrochemical Determination of 4-Nitrophenol Using a Single-Wall Carbon Nanotube Film-Coated Glassy Carbon Electrode. Microchim. Acta 2004, 148, 87–92. [Google Scholar] [CrossRef]
- Casella, I.G.; Contursi, M. The Electrochemical Reduction of Nitrophenols on Silver Globular Particles Electrodeposited under Pulsed Potential Conditions. J. Electrochem. Soc. 2007, 154, D697. [Google Scholar] [CrossRef]
- Dan, X.; Ruiyi, L.; Qinsheng, W.; Yongqiang, T.; Guangli, W.; Zaijun, L. Thermal-switchable sensor based on palladium-graphene composite and poly(N-isopropylacrylamide) for electrochemical detection of 4-nitrophenol. Microchem. J 2022, 172, 106970. [Google Scholar] [CrossRef]
- Mohanta, D.; Mahanta, A.; Mishra, S.R.; Jasimuddin, S.; Ahmaruzzaman, M. Novel SnO2@ZIF-8/gC3N4 nanohybrids for excellent electrochemical performance towards sensing of p-nitrophenol. Environ. Res. 2021, 197, 111077. [Google Scholar] [CrossRef]
- Anbumannan, V.; Dinesh, M.; Kumar, R.T.R.; Suresh, K. Hierarchical α-MnO2 wrapped MWCNTs sensor for low level detection of p-nitrophenol in water. Ceram. Int. 2019, 45, 23097–23103. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Yang, S.; Bai, X.; Shan, J. Self-assembled Ti3C2TX MXene/graphene composite for the electrochemical reduction and detection of p-nitrophenol. Microchem. J. 2022, 179, 107473. [Google Scholar] [CrossRef]
- Ren, D.; Wang, X.; Leng, C.; Meng, W.; Zhang, J.; Han, C. A Highly Sensitive Electrochemical Sensing Platform Based on P-doped Fe/Fe3O4@C for the Detection of 4-Nitrophenol. J. Electrochem. Soc. 2022, 169, 097501. [Google Scholar] [CrossRef]
- Lei, L.; Li, C.; Huang, W.; Wu, K. Simultaneous detection of 4-chlorophenol and 4-nitrophenol using a Ti3C2Tx MXene based electrochemical sensor. Analyst 2021, 146, 7593–7600. [Google Scholar] [CrossRef]
- Dighole, R.P.; Munde, A.V.; Mulik, B.B.; Sathe, B.R. Bi2O3 Nanoparticles Decorated Carbon Nanotube: An Effective Nanoelectrode for Enhanced Electrocatalytic 4-Nitrophenol Reduction. Front. Chem. 2020, 8, 325. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Khan, M.Q.; Khan, R.A.; Ahmad, K.; Kim, H. Hydrothermal Synthesis of MnO2/Reduced Graphene Oxide Composite for 4-Nitrophenol Sensing Applications. Inorganics 2022, 10, 219. https://doi.org/10.3390/inorganics10120219
Kumar P, Khan MQ, Khan RA, Ahmad K, Kim H. Hydrothermal Synthesis of MnO2/Reduced Graphene Oxide Composite for 4-Nitrophenol Sensing Applications. Inorganics. 2022; 10(12):219. https://doi.org/10.3390/inorganics10120219
Chicago/Turabian StyleKumar, Praveen, Mohd Quasim Khan, Rais Ahmad Khan, Khursheed Ahmad, and Haekyoung Kim. 2022. "Hydrothermal Synthesis of MnO2/Reduced Graphene Oxide Composite for 4-Nitrophenol Sensing Applications" Inorganics 10, no. 12: 219. https://doi.org/10.3390/inorganics10120219
APA StyleKumar, P., Khan, M. Q., Khan, R. A., Ahmad, K., & Kim, H. (2022). Hydrothermal Synthesis of MnO2/Reduced Graphene Oxide Composite for 4-Nitrophenol Sensing Applications. Inorganics, 10(12), 219. https://doi.org/10.3390/inorganics10120219