Multi-Centered Solid-Phase Quasi-Intramolecular Redox Reactions of [(Chlorido)Pentaamminecobalt(III)] Permanganate—An Easy Route to Prepare Phase Pure CoMn2O4 Spinel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Properties of Compound 3-Mn
2.2. Structure of Compound 3-Mn
2.3. Spectroscopic Properties of Compound 3-Mn
2.3.1. Vibrational Modes of the Permanganate Anion
Band/Assignation | Wavenumber/Raman Shift (cm−1) | ||
---|---|---|---|
IR | Raman (785 nm) | ||
298 K | 123 K | ||
ν1 (MnO), νas (A) * | 829 | 841 | 848, 838 |
ν3 (MnO), νas (F2) | 895 | 903 | 928, 918sh, 913sh, 905sh, 899sh |
ν4 (MnO), δas (F2) | 379 | 389 | 396, 386, 383 |
ν2 (MnO), δs (E) | 352 | 346 | 352sh, 358sh, 346 |
2.3.2. Ligand Vibrations
Band/Assignation | Wavenumber (cm−1) | |||
---|---|---|---|---|
Compound 3-Mn | Deuterated Compound 3-Mn | |||
IR, 298 K | Raman (785 nm), 123 K | IR, 298 K | Raman (785 nm), 123 K | |
νas (HNH)(DND) | 3293 | - | 2444 | - |
νs (HNH)(DND) | 3270 | - | 2319 | - |
δas(HNH)(DND) | 1607 | - | 1153 | - |
δs(HNH)(DND) | 1324, 1294 (m) | 1352, 1311 (vw) | 1015 | - |
ρ (NH3)(ND3) | 829 (s) | - | 646 | - |
2.3.3. Skeletal Vibrations
Species | Mode | Assignation | Compound 3-Mn | Deuterated Compound 3-Mn | ||
---|---|---|---|---|---|---|
IR (298 K) | Raman (123 K) | IR (298 K) | Raman (123 K) | |||
A1 (R IR) | ν1 | ν (Co-Cl) | 278, 272sh | 288, 285 | 264 | 265 |
ν2 | νs(CoN4) | 458 | 465 | 451 | 456 | |
ν3 | ν (Co-N)axial | 488 | 487 | 483 | 489 | |
ν4 | π (Co-N4) | 199 | 189sh | 185 | 184 | |
B1 (R) | ν5 | νas (CoN4) | - | 443 | - | 448 |
ν6 | π (Co-N4) | - | 193sh | - | 193sh | |
B2 (R) | ν7 | δ (NCoN) | - | 327 | - | 327 |
E (R, IR) | ν8 | ν (Co-N)axial | 505, 493 sh | 496 sh | 483 | 505 |
ν9 | δ (NCoN or CoN4 wag) | 320 | 329 | 344 sh | 347 | |
ν10 | δ (NCoCl or CoN4 rock) | 200 | 205 | 199 sh | 203 | |
ν11 | δ (NCoN or CoN4 in-plane blend) | 259sh | 265 | 264 | 265 |
2.4. UV-VIS Spectroscopy
2.5. Thermal Decomposition of Compound 3-Mn
2.6. Surface Characterization of the Thermal Decomposition Products of Compound 3-Mn and Their Photocatalytic Activity in Congo Red Degradation
3. Materials and Methods
4. Conclusions
- An unknown cobalt(III) complex with chlorido and ammonia ligands, [Co(NH3)5Cl](MnO4)2 (compound 3-Mn), was synthesized. This complex is a precursor to nanosized Co-manganite with Co:Mn = 1:2 stoichiometry and an average size of 16.8 nm.
- The vibrational modes in compound 3-Mn were studied in detail and the overlapping bands were assigned via deuteration and low-temperature Raman measurements.
- The structure of compound 3-Mn was revealed with single-crystal X-ray diffraction and the 3D-hydrogen bonds were evaluated.
- The hydrogen bonds between the N-H hydrogen atoms and the Mn-O oxygen atoms acted as redox centers to initiate a solid-phase quasi-intramolecular redox reaction even at 120 °C involving the CoIII centers and permanganate ion as the oxidants and ammonia as a reductant. An amorphous precursor of [Co(NH3)5Cl]Cl2, NH4NO3, and a todorokite-like compound contains {Mn4IIIMnIV2O12}n4n−, {Mn5IIIMnIVO12}n5n− or {MnIII6O12}n6n− frameworks with 2 × n (CoII and/or CoIII) cations, and 4 × n ammonia ligand in their tunnels.
- The decomposition intermediates formed at ~120 °C and decomposed on heating via a series of redox reactions with the formation of such redox products as CoIIMnIII2O4 spinel, N2, N2O and Cl2. 6) The only solid was the nanosized (16. 8 nm) CoMn2O4, with a Co:Mn = 1:2 stoichiometry.
- The thermal decomposition reaction of compound 3-Mn consisted of a series of solid-phase quasi-intramolecular redox reactions consisting of various redox pairs such as permanganate ions and ammonia ligands, Co(III) and Mn(III), Co(III) and ammonia, or nitrate and ammonium ions.
- The prepared CoMn2O4 spinel had photocatalytic activity in Congo red degradation with UV light. The activity of CoMn2O4 depended on its synthesis conditions such as temperature or atmosphere. Congo red degradation was 9 and 13 times faster in the presence of CoMn2O4 prepared at 520 °C (in air) or 450 °C (under N2), respectively.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Solt, H.E.; Németh, P.; Mohai, M.; Sajó, I.E.; Klébert, S.; Franguelli, F.P.; Fogaca, L.A.; Pawar, R.P.; Kótai, L. Temperature-Limited Synthesis of Copper Manganites along the Borderline of the Amorphous/Crystalline State and Their Catalytic Activity in CO Oxidation. ACS Omega 2021, 6, 1523–1533. [Google Scholar] [CrossRef] [PubMed]
- Fogaca, L.A.; Kováts, É.; Németh, G.; Kamarás, K.; Berés, K.A.; Németh, P.; Petruševski, V.; Bereczki, L.; Holló, B.B.; Sajó, I.E.; et al. Solid-Phase Quasi-Intramolecular Redox Reaction of [Ag(NH3)2]MnO4: An Easy Way to Prepare Pure AgMnO2. Inorg. Chem. 2021, 60, 3749–3760. [Google Scholar] [CrossRef] [PubMed]
- Kótai, L.; Baneerji, K.K.; Sajó, I.; Kristof, J.; Sreedhar, B.; Holly, S.; Keresztury, G.; Rockenbauer, A. An unprecedented-type intramolecular redox reaction of solid tetraamminecopper(2+) bis(permanganate)-[Cu(NH3)4](MnO4)2)–A low-temperature synthesis of copper dimanganese tetraoxide-type (CuMn2O4) nanocrystalline catalyst precursors. Helv. Chim. Acta 2002, 85, 2316–2327. [Google Scholar] [CrossRef]
- Sajó, I.E.; Kótai, L.; Keresztury, G.; Gács, I.; Pokol, G.; Kristóf, J.; Soptrayanov, B.; Petruševski, V.; Timpu, D.; Sharma, P.K. Studies on the Chemistry of Tetraamminezinc(II) Dipermanganate ([Zn(NH3)4](MnO4)2): Low-Temperature Synthesis of the Manganese Zinc Oxide (ZnMn2O4) Catalyst Precursor. Helv. Chim. Acta 2008, 91, 1646–1658. [Google Scholar] [CrossRef]
- Kótai, L.; Sajó, I.E.; Jakab, E.; Keresztury, G.; Németh, C.; Gács, I.; Menyhárd, A.; Kristóf, J.; Hajba, L.; Petruševski, V.; et al. Studies on the chemistry of [Cd(NH3)4](MnO4)2. A low-temperature synthesis route of the CdMn2O4+x type NOx and CH3SH sensor. Z. Anorg. All. Chem 2012, 638, 177–186. [Google Scholar] [CrossRef]
- Mansouri, M.; Atashi, H.; Tabrizi, F.F.; Mirzaei, A.A.; Mansouri, G. Kinetics studies of nano-structured cobalt-manganese oxide catalysts in Fischer-Tropsch synthesis. J. Ind. Eng. Chem. 2013, 19, 1177–1183. [Google Scholar] [CrossRef]
- Franguelli, F.P.; Berés, K.A.; Kótai, L. Pyridinesilver Tetraoxometallate Complexes: Overview of the Synthesis, Structure, and Properties of Pyridine Complexed AgXO4 (X = Cl, Mn, Re) Compounds. Inorganics 2021, 9, 79. [Google Scholar] [CrossRef]
- Kovács, G.B.; May, N.V.; Bombicz, P.A.; Klébert, S.; Németh, P.; Menyhárd, A.; Novodárszki, G.; Petruševski, V.; Franguelli, F.P.; Magyari, J.; et al. An unknown component of a selective and mild oxidant: Structure and oxidative ability of a double salt-type complex having κ1O-coordinated permanganate anions and three- and four-fold coordinated silver cations. RSC Adv. 2019, 9, 28387–38398. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, G.; Mansouri, M. Synthesis and characterization of Co-Mn nanocatalyst prepared by thermal decomposition for Fischer-Tropsch reaction. Iran. J. Chem. Eng. 2018, 37, 1–9. [Google Scholar]
- Alvisi, G.U. Ricerche sui Perclorati. Perclorati di Luteocobaltiammine ed osservazioni sui metalloammoni. Gazz. Chim. Ital. 1901, 31, 289–301. [Google Scholar]
- Klobb, T. Contribution à l’étude des sels lutéocobaltiques. Bull. Soc. Chim. Paris 1901, 25, 1022–1031. [Google Scholar]
- Krestov, G.A.; Yatsimirsikii, K.B. Thermodynamical characteristics of (chloro)(pentaamine)cobalt type complex compounds. Zh. Neorg. Khim. 1961, 6, 2294–2303. [Google Scholar]
- Linhard, M.; Weigel, M. Uber Komplexverbindungen XXII. Lichtabsorption von Halogeno-pentammin-Co(III)-komplexen im Rot und nahen U.R. Z. Phys. Chem. 1957, 11, 308–317. [Google Scholar] [CrossRef]
- Jorgensen, S.M. Beitrage zur Chemie der Kobaltammoniakverbindungen; I. Ueber die Chloropurpureokobaltsalze. J. für Prakt. Chemie. 1878, 18, 209–247. [Google Scholar] [CrossRef]
- Baidina, I.A.; Filatov, E.Y.; Makotchenko, E.V.; Smolentseev, A.I. Synthesis and structure investigation of Co(III) complex salts with the perrhenate ion. J. Struct. Chem. 2012, 53, 112–118. [Google Scholar] [CrossRef]
- Shubin, Y.; Filatov, E.; Baidina, I.; Yusenko, K.; Zadesenetz, A.; Korenev, S.V. Synthesis of [M(NH3)5Cl](ReO4)2 (M = Cr, Co, Ru, Rh, Ir) and investigation of thermolysis products. Crystal structure of [Rh(NH3)5Cl](ReO4)2. J. Struct. Chem. 2006, 47, 1103–1110. [Google Scholar] [CrossRef]
- Kótai, L.; Gács, L.; Sajó, I.E.; Sharma, P.K.; Banerji, K.K. Beliefs and facts in permanganate chemistry–and overview on the synthesis and the reactivity of simple and complex permanganates. Trends. Inorg. Chem. 2011, 11, 25–104. [Google Scholar] [CrossRef]
- Kótai, L.; Sajó, I.E.; Gács, I.; Pradeep, K.S.; Banerji, K.K. Convenient routes for the preparation of barium permanganate and other permanganate salts. Z. Anorg. All. Chem. 2007, 633, 1257–1260. [Google Scholar] [CrossRef]
- Kótai, L.; Keszler, A.; Pató, J.; Holly, S.; Banerji, K.K. The reaction of barium manganate with acids and their precursors. Ind. J. Chem. A. 1998, 38A, 966–968. [Google Scholar]
- Kótai, L.; Banerji, K.K. An improved method for the preparation of high-purity permanganate salts. Synth. React. Inorg. Met. Org. Chem. 2001, 31, 491–495. [Google Scholar] [CrossRef]
- Abbas, N.K.; Habeeb, M.A.; Algidsawi, A.J.K. Preparation of chloropentaamminecobalt (III) chloride and study of its influence on the structural and some optical properties of polyvinyl acetate. Int. J. Polym. Sci. 2015, 926789. [Google Scholar]
- Najar, M.H.; Majid, K. Synthesis, characterization, electrical and thermal properties of nanocomposite of polythiophene with nanophotoadduct: A potent composite for electronic use. J. Mater. Sci. Mater. Electron. 2013, 24, 4332–4339. [Google Scholar] [CrossRef]
- Sacconi, B.L.; Sabatini, A.; Cans, P. Infrared Spectra from of Some Metal-Ammine Complexes. Inorg. Chem. 1964, 3, 1772–1774. [Google Scholar] [CrossRef]
- Fleming, G.D.; Tellez, C. Estudo espectroscópico vibracional dos complexos [Co(NH3)5X]X2 (X= Cl, Br) com substituição isotópica H/D. (I): Análise de baixa energia. Semin. Cienc. Biol. Saúde 1982, 12, 263–267. [Google Scholar]
- Loehr, T.M.; Zinich, J.; Long, T.V. The laser-Raman spectra of hexaamminecobalt(III), chloropentaamminecobalt(III), and trans-dichlorotetraamminecobalt(III). Chem. Phys. Lett. 1970, 7, 183–186. [Google Scholar] [CrossRef]
- Chen, Y.; Christensen, D.H.; Sorensen, G.O.; Nielsen, O.F.; Pedersen, E.B. The skeletal vibrational spectra and metal-ligand force constants of cobalt(III) ammine complexes. J. Mol. Struct. 1993, 299, 61–72. [Google Scholar] [CrossRef]
- Grinberg, A.A.; Varshavskii, Y.S. The frequency of coordinated ammonia deformation mode and its relationship with the chemical properties of transition metal ammonia complexes. Primen. Molekul. Spektr. Khim. 1966, 104–107. [Google Scholar]
- Bereczki, L.; Fogaca, L.A.; Durvanger, Z.; Harmat, V.; Kamarás, K.; Németh, G.; Holló, B.B.; Petruševski, V.; Bódis, E.; Farkas, A.; et al. Dynamic disorder in the high-temperature polymorph of bis[iamminesilver(I)] sulfate–reasons and consequences of simultaneous ammonia release from two different polymorphs. J. Coord. Chem. 2021, 74, 2144–2162. [Google Scholar] [CrossRef]
- Mitsutsuka, Y.; Kondo, I.; Nakahara, M. Splitting parameters in Ligand field absorption bands of cobalt(III) ammine complexes with chloro or aqua ligands. Bull. Chem. Soc. Japan 1986, 59, 2767–2771. [Google Scholar] [CrossRef] [Green Version]
- Yamatera, H. Charge-transfer spectra in metal complexes, especially in halogenopentamminecobalt(III) ions. J. Inorg. Nucl Chem. 1960, 15, 50–62. [Google Scholar] [CrossRef]
- Muller, A.; Christophliemk, P.; Tossidiss, I. Struktur thermisches verhalten und eigenschaften von tetramminokobalt(II)-perrhenat [Co(NH3)4](ReO4)2; elektronen-und schwingungsspektre. J. Mol. Struct. 1973, 15, 289–299. [Google Scholar] [CrossRef]
- Potter, R.M.; Rossman, G.R. The tetravalent manganese oxides: Identification, hydration and structural relationships by infrared spectroscopy. Am. Mineral. 1979, 64, 1199–1218. [Google Scholar]
- Wendland, W.W.; Smith, J.P. The thermal decomposition of metal complexes–VII a thermomagnetic study of the Co(III)~Co(II) reduction in cobalt(III) ammine complexes. J. Inorg. Nucl. Chem. 1963, 25, 1267–1272. [Google Scholar] [CrossRef]
- Turner, S.; Buseck, P.R. Todorokites: A new family of naturally occurring manganese oxides. Science 1981, 212, 1024–1027. [Google Scholar] [CrossRef] [PubMed]
- Kocsis, T.; Magyari, J.; Sajó, I.E.; Pasinszki, T.; Homonnay, Z.; Szilagyi, I.M.; Farkas, A.; May, Z.; Effenberger, H.; Szakall, S.; et al. Evidence of quasi-intramolecular redox reactions during thermal decomposition of ammonium hydroxodisulfitoferriate(III), (NH4)2[Fe(OH)(SO3)2]H2O. J. Therm. Anal. Calorim. 2018, 132, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Fogaça, L.A.; Bereczki, L.; Petruševski, V.M.; Barta-Holló, B.; Franguelli, F.P.; Mohai, M.; Béres, K.A.; Sajó, I.E.; Szilágyi, I.M.; Kotai, L. A quasi-intramolecular solid-phase redox reaction of ammonia ligands and perchlorate anion in diamminesilver(I) perchlorate. Inorganics 2021, 9, 38. [Google Scholar] [CrossRef]
- Han, Z.; Sachdeva, S.; Papadaki, M.I.; Mannan, M.S. Ammonium nitrate thermal decomposition with additives. J. Loss Prev. Process Ind. 2015, 35, 307–315. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Dave, P.N. Review on thermal decomposition of ammonium nitrate. J. Energetic Mater. 2013, 31, 1–26. [Google Scholar] [CrossRef]
- Muniz, F.T.L.; Miranda, M.A.R.; Dos Santos, C.M.; Sasaki, H.M. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. Sect. A Found. Advances. 2016, 72, 385–390. [Google Scholar] [CrossRef]
- Brönsted, J.N.; Delbanco, A.; Volqvartz, K. Über die Bedeutung des Lösungsmittels für die Löslichkeit von Salzen und die Aktivitätskoeffizienten der Ionen. Z. Für Phys. Chemie. 1932, 162, 128–146. [Google Scholar] [CrossRef]
Compound | Label |
---|---|
[Co(NH3)6]Cl(MnO4)2 | 1-Mn |
[Co(NH3)6]Cl(ClO4)2 | 1-Cl |
[Co(NH3)6]Cl2(MnO4) | 2-Mn |
[Co(NH3)5Cl](MnO4)2 | 3-Mn |
[Co(NH3)5Cl](ClO4)2 | 3-Cl |
[Co(NH3)5Cl])ReO4)2·nH2O | 3-Re |
[Co(NH3)5Cl]Cl2 | 4 |
Empirical Formula | [Co(NH3)5Cl](MnO4)2 | [Co(NH3)5Cl](ReO4)2·nH2O [15] |
---|---|---|
Formula Weight | 417.4101 g·mol−1 | 679.95 g·mol−1 |
Crystal System | Orthorhombic | Orthorhombic |
Space Group | Cmc21 | Cmc21 |
Unit cell dimensions, Å | a = 14.2753 (7) b = 14.2816 (6) c = 12.2342 (5); | a = 14.9446 (3) b = 14.6562 (4) c = 12.2434 (4) |
Z | 8 | 8 |
Density (calcd.) (g·cm−3) | 2.216 | 3.368 |
Temperature (K) | 298 | 293 |
Volume (Å3) | 2494.24 (19) | 2681.68 (13) |
R factor (%) | 3.67 | 2.35 |
T °C (N2) | 125 | 150 | 220 | 420 |
SSA (m2·g−1) | 130 | 118 | 176 | 32 |
T °C (air) | 125 | 150 | 300 | 500 |
SSA (m2·g−1) | 22 | 23 | 194 | 23 |
Substrate | pH | Kapp/10−4·min−1 | R2 |
---|---|---|---|
Congo Red, 2·10−5 M, without catalyst | 5.7 | 1.0 | 0.99 |
Congo red, 2·10−5 M, with compound 3-Mn at 125 °C in N2 | 5.7 | 5.0 | 0.93 |
Congo red, 2·10−5 M, with compound 3-Mn at 125 °C in air | 5.7 | 18.0 | 0.89 |
Congo red, 2·10−5 M, with compound 3-Mn at 420 °C in N2 | 5.7 | 13.0 | 0.98 |
Congo red, 2·10−5 M, with compound 3-Mn at 550 °C in air | 5.7 | 9.0 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franguelli, F.P.; Kováts, É.; Czégény, Z.; Bereczki, L.; Petruševski, V.M.; Barta Holló, B.; Béres, K.A.; Farkas, A.; Szilágyi, I.M.; Kótai, L. Multi-Centered Solid-Phase Quasi-Intramolecular Redox Reactions of [(Chlorido)Pentaamminecobalt(III)] Permanganate—An Easy Route to Prepare Phase Pure CoMn2O4 Spinel. Inorganics 2022, 10, 18. https://doi.org/10.3390/inorganics10020018
Franguelli FP, Kováts É, Czégény Z, Bereczki L, Petruševski VM, Barta Holló B, Béres KA, Farkas A, Szilágyi IM, Kótai L. Multi-Centered Solid-Phase Quasi-Intramolecular Redox Reactions of [(Chlorido)Pentaamminecobalt(III)] Permanganate—An Easy Route to Prepare Phase Pure CoMn2O4 Spinel. Inorganics. 2022; 10(2):18. https://doi.org/10.3390/inorganics10020018
Chicago/Turabian StyleFranguelli, Fernanda Paiva, Éva Kováts, Zsuzsanna Czégény, Laura Bereczki, Vladimir M. Petruševski, Berta Barta Holló, Kende Attila Béres, Attila Farkas, Imre Miklós Szilágyi, and László Kótai. 2022. "Multi-Centered Solid-Phase Quasi-Intramolecular Redox Reactions of [(Chlorido)Pentaamminecobalt(III)] Permanganate—An Easy Route to Prepare Phase Pure CoMn2O4 Spinel" Inorganics 10, no. 2: 18. https://doi.org/10.3390/inorganics10020018
APA StyleFranguelli, F. P., Kováts, É., Czégény, Z., Bereczki, L., Petruševski, V. M., Barta Holló, B., Béres, K. A., Farkas, A., Szilágyi, I. M., & Kótai, L. (2022). Multi-Centered Solid-Phase Quasi-Intramolecular Redox Reactions of [(Chlorido)Pentaamminecobalt(III)] Permanganate—An Easy Route to Prepare Phase Pure CoMn2O4 Spinel. Inorganics, 10(2), 18. https://doi.org/10.3390/inorganics10020018