Hydrogenation of Carbon Dioxide to Formate Using a Cadmium-Based Metal–Organic Framework Impregnated with Nanoparticles
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Synthesis and Characterisation of Cd(bdc)(DMF)n(MOF1)
2.3. Preparation of Pd, Pt, and Ni Nanoparticles
2.4. Preparation of MOF1/Pd, MOF1/Ni, and MOF1/Pt
2.5. General Procedure for CO2 Hydrogenation Experiments
3. Results and Discussion
3.1. Structural Description
3.2. PXRD Analysis for MOF1/Pd, MOF1/Ni, and MOF1/Pt
3.3. Thermal Analysis
3.4. High-Resolution Electron (HR-TEM) Spectroscopy, ICP–OES, and EDX Analysis
3.5. Chemical Stability Studies
Catalysis Studies
3.6. Temperature and Catalyst Load Effect on Precatalysts MOF1/Pd Activity
3.7. CO2 Hydrogenation under Optimised Conditions
3.8. Reusability and Leaching of MOF1/Pd, MOF1/Ni, and MOF1/Pt during CO2 Hydrogenation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; Adjiman, C.S.; Williams, C.K.; Shah, N.; Fennell, P. An overview of CO2 capture technologies. Energy Environ. Sci. 2010, 3, 1645. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-N.; Ma, R.; He, L.-N.; Diao, Z.-F. Homogeneous hydrogenation of carbon dioxide to methanol. Catal. Sci. Technol. 2014, 4, 1498. [Google Scholar] [CrossRef]
- Muller, K.; Sun, Y.; Thiel, W.R. Ruthenium(II)-Phosphite Complexes as Catalysts for the Hydrogenation of Carbon Dioxide. ChemCatChem 2013, 5, 1340–1343. [Google Scholar] [CrossRef]
- Federsel, C.; Jackstell, R.; Beller, M. State-of-the-art catalysts for hydrogenation of carbon dioxide. Angew. Chem. Int. Ed. 2010, 49, 6254–6257. [Google Scholar] [CrossRef] [PubMed]
- Dhakshinamoorthy, A.; Opanasenko, M.; Cejka, J.; Garcia, H. Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catal. Sci. Technol. 2013, 3, 2509–2540. [Google Scholar] [CrossRef]
- Barsukova, M.; Goncharova, T.; Samsonenko, D.; Dybtsev, D.; Potapov, A. Synthesis, Crystal Structure, and Luminescent Properties of New Zinc(II) and Cadmium(II) Metal-Organic Frameworks Based on Flexible Bis(imidazol-1-yl)alkane Ligands. Crystals 2016, 6, 132. [Google Scholar] [CrossRef]
- Agarwal, R. Methanol Synthesis from CO2 Hydrogenation Using Metal–Organic Frameworks. In CO2 Separation, Purification and Conversion to Chemicals and Fuels; Springer: Singapore, 2019; pp. 79–92. ISBN 978-981-13-3295-1. [Google Scholar]
- Rungtaweevoranit, B.; Baek, J.R.; Araujo, J.; S. Archanjo, B.; Min Choi, K.; M. Yaghi, O.; A. Somorjai, G. Copper Nanocrystals Encapsulated in Zr-based Metal–Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol. Nano Lett. 2016, 16, 7645–7649. [Google Scholar] [CrossRef]
- Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933–969. [Google Scholar] [CrossRef]
- Pachfule, P.; Das, R.; Poddar, P.; Banerjee, R. Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link. Cryst. Growth Des. 2011, 11, 1215–1222. [Google Scholar] [CrossRef]
- Ni, Z.; Masel, R.I. Rapid Production of Metal−Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Yao, Q.; Chen, X.; Lu, Z.-H. Controlled Synthesis of MOF-Encapsulated NiPt Nanoparticles toward Efficient and Complete Hydrogen Evolution from Hydrazine Borane and Hydrazine. Inorg. Chem. 2017, 56, 11938–11945. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Z.; Xiao, W.; Deng, S.; Chen, C.; Zhang, N. Mechanochemistry-assisted encapsulation of metal nanoparticles in MOF matrices via a sacrificial strategy. J. Mater. Chem. A 2019, 7, 14504–14509. [Google Scholar] [CrossRef]
- Dou, S.; Li, X.; Tao, L.; Huo, J.; Wang, S. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis. Chem. Commun. 2016, 52, 9727–9730. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, H.; Luque, R.; Li, Y. Metal−organic framework encapsulated Pd nanoparticles: Towards advanced heterogeneous catalysts. Chem. Sci. 2014, 5, 3708–3714. [Google Scholar] [CrossRef]
- Gutterød, E.S.; Lazzarini, A.; Fjermestad, T.; Kaur, G.; Manzoli, M.; Bordiga, S.; Svelle, S.; Lillerud, K.P.; Skúlason, E.; Øien-ØDegaard, S.; et al. Hydrogenation of CO2 to Methanol by Pt Nanoparticles Encapsulated in UiO-67: Deciphering the Role of the Metal-Organic Framework. J. Am. Chem. Soc. 2020, 142, 999–1009. [Google Scholar] [CrossRef]
- Olsbye, U.; Nova, A.; Gutterød, E.S.; Pulumati, S.H.; Kaur, G.; Lazzarini, A.; Solemsli, B.G.; Gunnæs, A.E.; Ahoba-Sam, C.; Kalyva, M.E.; et al. Influence of defects and H2O on the hydrogenation of CO2 to methanol over pt nanoparticles in UiO-67 metal-organic framework. J. Am. Chem. Soc. 2020, 142, 17105–17118. [Google Scholar] [CrossRef]
- Tshuma, P.; Makhubela, B.; Mehlana, G.; Bingwa, N. Palladium(II) Immobilized on Metal–Organic Frameworks for Catalytic Conversion of Carbon Dioxide to Formate. Inorg. Chem. 2020, 59, 6717–6728. [Google Scholar] [CrossRef]
- Tshuma, P.; Makhubela, B.C.E.; Öhrström, L.; Bourne, S.A.; Chatterjee, N.; Beas, I.N.; Darkwa, J.; Mehlana, G. Cyclometalation of lanthanum(III) based MOF for catalytic hydrogenation of carbon dioxide to formate. RSC Adv. 2020, 10, 3593–3605. [Google Scholar] [CrossRef] [Green Version]
- Burrows, A.D.; Cassar, K.; Düren, T.; Friend, R.M.W.; Mahon, M.F.; Rigby, S.P.; Savarese, T.L. Syntheses, structures and properties of cadmium benzenedicarboxylate metal-organic frameworks. Dalton Trans. 2008, 18, 2465–2474. [Google Scholar] [CrossRef]
- Mondloch, J.; Karagiaridi, O.; Farha, O.; Hupp, J. Activation of metal–organic framework materials. CrystEngComm 2013, 15, 9258–9264. [Google Scholar] [CrossRef]
- Servalli, M.; Bokhoven, J.A. Van Fast and high yield post-synthetic modification of metal—organic frameworks by vapor diffusion w. Chem. Commun. 2012, 48, 1904–1906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Mu, C.; Yan, B.; Qin, X.; Shen, C.; Xue, H.; Pang, H. Nanoparticle / MOF composites: Preparations and applications. Mater. Horizons 2017, 4, 557–569. [Google Scholar] [CrossRef]
- Lei, Y.; Zhao, H.; Rivas, R.D.; Lee, S.; Liu, B.; Lu, J.; Stach, E.; Winans, R.E.; Chapman, K.W.; Greeley, J.P.; et al. Adsorbate-induced structural changes in 1–3 nm platinum nanoparticles Adsorbate-Induced Structural Changes in 1–3 nm Platinum. J. Am. Chem. Soc. 2014, 136, 9320–9326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Y.; Kondoh, H.; Ohta, T.; Gao, S. Size-controlled synthesis of nickel nanoparticles. Appl. Surf. Sci. 2005, 241, 218–222. [Google Scholar] [CrossRef]
- Ezugwu, C.I.; Alam, N.; Yusubov, M.; Verpoort, F. Metal—organic frameworks containing N-heterocyclic carbenes and their precursors. Coord. Chem. Rev. 2016, 307, 188–210. [Google Scholar] [CrossRef] [Green Version]
- Zhan, G.; Zeng, H.C. Alternative synthetic approaches for metal—organic frameworks: Transformation from solid. Chem. Commun. 2016, 53, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.-W.; Zhou, X.; Liu, Y.-N.; Shen, C.-C.; Yuan, C.-Z.; Jiang, Y.-F.; Zhao, S.-J.; Ma, L.-B.; Cheang, T.-Y.; Xu, A.-W. Ultrasmall Ni nanoparticles embedded in Zr-based MOFs provide high selectivity for CO2 hydrogenation to methane at low temperatures. Catal. Sci. Technol. 2018, 8, 3160–3165. [Google Scholar] [CrossRef]
Entry | Cat. | Cat. (µmol) | Temp/(°C) | Base | Ratio CO2/H2 | HCOO (mmol) | TON | Yield (%) | TOF (h−1) |
---|---|---|---|---|---|---|---|---|---|
1 [a] | MOF1 | 3.00 | 160 | Et3N | 1:3 | - | - | - | - |
2 [a] | MOF1 | 3.00 | 160 | DBU | 1:3 | - | - | - | - |
3 | MOF1 | 3.00 | 160 | KOH | 1:3 | - | - | - | - |
Entry | Cat. | Base | Ratio CO2:H2 | HCOO (mmol) | TON | Yield (%) | TOF (h−1) |
---|---|---|---|---|---|---|---|
1 | MOF1/Pd | KOH | 1:3 | 3.1 | 1033 | 62 | 43 |
2 | MOF1/Pt | KOH | 1:3 | 1.9 | 633 | 44 | 26.4 |
3 | MOF/Ni | KOH | 1:3 | 0.11 | 37 | 2.2 | 1.5 |
4 | Pd/NPs | KOH | 1:3 | 2.3 | 782 | 46 | 33 |
5 | Pt/NPs | KOH | 1:3 | 1.3 | 437 | 26 | 19 |
6 | Ni/NPs | KOH | 1:3 | 0.05 | 17 | 1 | 0.7 |
7 | MOF1/Pd | No base | 1:3 | - | - | - | - |
8 [b] | MOF1/Pd | KOH | 1:3 | - | - | - | - |
9 [c] | MOF/Pd | KOH | 1:3 | - | - | - | - |
10 [d] | MOF1/Pd | KOH | 1:3 | 1.9 | 633 | 38 | 53 |
11 [e] | MOF1/Pd | KOH | 1:3 | 0.41 | 137 | 8.2 | 69 |
12 | MOF1/Pd | KOH | 1:2 | 2.1 | 700 | 42 | 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makuve, N.; Darkwa, J.; Mehlana, G.; Makhubela, B.C.E. Hydrogenation of Carbon Dioxide to Formate Using a Cadmium-Based Metal–Organic Framework Impregnated with Nanoparticles. Inorganics 2022, 10, 30. https://doi.org/10.3390/inorganics10030030
Makuve N, Darkwa J, Mehlana G, Makhubela BCE. Hydrogenation of Carbon Dioxide to Formate Using a Cadmium-Based Metal–Organic Framework Impregnated with Nanoparticles. Inorganics. 2022; 10(3):30. https://doi.org/10.3390/inorganics10030030
Chicago/Turabian StyleMakuve, Nyasha, James Darkwa, Gift Mehlana, and Banothile C. E. Makhubela. 2022. "Hydrogenation of Carbon Dioxide to Formate Using a Cadmium-Based Metal–Organic Framework Impregnated with Nanoparticles" Inorganics 10, no. 3: 30. https://doi.org/10.3390/inorganics10030030
APA StyleMakuve, N., Darkwa, J., Mehlana, G., & Makhubela, B. C. E. (2022). Hydrogenation of Carbon Dioxide to Formate Using a Cadmium-Based Metal–Organic Framework Impregnated with Nanoparticles. Inorganics, 10(3), 30. https://doi.org/10.3390/inorganics10030030