Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water Splitting
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemical and Materials
2.2. Preparation of Electrocatalysts
2.2.1. Preparation of GO Modified CC
2.2.2. Deposition of NiCu–LDH on GO/CC
2.2.3. Deposition NiCu–BDC on GO/CC
2.2.4. Carbonization of NiCu–BDC/GO/CC
2.2.5. Preparation of C–NiCu–BDC/GO/CC Powder
2.3. Material Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Structural Characterization
3.2. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berahab, R. The Energy Crisis of 2021 and its Implications for Africa; Policy No. 1967; Policy Center New South: Rabat, Morocco, 2022. [Google Scholar]
- Kandel, R. Water from Heaven: The Story of Water from the Big Bang to the Rise of Civilization, and Beyond; Columbia University Press: New York, NY, USA, 2003; Available online: https://ebookcentral.proquest.com/lib/uow/detail.action?docID=909315 (accessed on 3 March 2006).
- Achebe, C.; Okafor, O.; Obika, E. Design and implementation of a crossflow turbine for Pico hydropower electricity generation. Heliyon 2020, 6, e04523. [Google Scholar] [CrossRef] [PubMed]
- Linstrom, P. NIST Chemistry WebBook; NIST Standard Reference Database Number 69; NIST Office of Data and Informatics: Gaithersburg, MD, USA, 2021. [Google Scholar] [CrossRef]
- Yan, Y.; He, T.; Zhao, B.; Qi, K.; Liu, H.; Xia, B.Y. Metal/Covalent-Organic Frameworks-Based Electrocatalysts for Water Splitting. J. Mater. Chem. A 2018, 6, 15905–15926. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, T.; Dong, C.L.; Huang, Y.C.; Li, Y.; Chen, J.; Zou, Y.; Wang, S. Tuning the Selective Adsorption Site of Biomass on Co3O4 by Ir Single Atoms for Electrosynthesis. Adv. Mater. 2021, 33, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Miao, N.; Wallace, G.G.; Chen, J.; Allwood, D.A. Engineering Carbon Materials for Electrochemical Oxygen Reduction Reactions. Adv. Energy Mater. 2021, 11, 1–22. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.Q.; Jiang, H.L.; Sun, L.B. Metal-Organic Frameworks for Heterogeneous Basic Catalysis. Chem. Rev. 2017, 117, 8129–8176. [Google Scholar] [CrossRef]
- Lu, X.F.; Xia, B.Y.; Zang, S.; Lou, X.W. (David) Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chemie 2020, 132, 4662–4678. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Fei, X.; Wang, W.; Zhao, Y.; Wang, X.; Tan, X.; Zhao, Q.; Wang, H.; Zhu, J.; et al. MOF derived bimetallic CuBi catalysts with ultra-wide potential window for high-efficient electrochemical reduction of CO2 to formate. Appl. Catal. B Environ. 2021, 298, 120571. [Google Scholar] [CrossRef]
- Chhetri, K.; Muthurasu, A.; Dahal, B.; Kim, T.; Mukhiya, T.; Chae, S.-H.; Ko, T.H. Engineering the abundant heterointerfaces of integrated bimetallic sulfide-coupled 2D MOF-derived mesoporous CoS2 nanoarray hybrids for electrocatalytic water splitting. Mater. Today Nano 2022, 17, 100146. [Google Scholar] [CrossRef]
- Wu, H.B.; Xiong, W.L. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci. Adv. 2017, 3, eaap9252. [Google Scholar] [CrossRef] [Green Version]
- Radwan, A.; Jin, H.; He, D.; Mu, S. Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nano-Micro Lett. 2021, 13, 1–32. [Google Scholar] [CrossRef]
- Wen, X.; Jingqi, G. Recent progress on MOF-derived electrocatalysts for hydrogen evolution reaction. Appl. Mater. Today 2019, 16, 146–168. [Google Scholar] [CrossRef]
- Qian, Y.; Inayat, A.K.; Dan, Z. Electrocatalysts derived from metal–organic frameworks for oxygen reduction and evolution reactions in aqueous media. Small 2017, 13, 1701143. [Google Scholar] [CrossRef]
- Gaur, A.; Pundir, V.; Krishankant; Rai, R.; Kaur, B.; Maruyama, T.; Bera, C.; Bagchi, V. Interfacial interaction induced OER activity of MOF derived superhydrophilic Co3O4–NiO hybrid nanostructures. Dalton Trans. 2022, 51, 2019–2025. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.A.; Jery, A.E.; Najam, T.; Nazir, M.A.; Wei, L.; Hussain, E.; Hussain, S.; Rebah, F.B.; Javed, M.S. Surface engineering of MOF-derived FeCo/NC core-shell nanostructures to enhance alkaline water-splitting. Int. J. Hydrog. Energy 2022, 47, 5036–5043. [Google Scholar] [CrossRef]
- Ming, F.; Liang, H.; Shi, H.; Xu, X.; Mei, G.; Wang, Z. MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. J. Mater. Chem. A 2016, 4, 15148–15155. [Google Scholar] [CrossRef]
- Yuan, Q.; Yu, Y.; Sherrell, P.; Chen, J.; Bi, X. Fe/Co-based Bimetallic MOF-derived Co3Fe7@ NCNTFs Bifunctional Electrocatalyst for High-Efficiency Overall Water Splitting. Chem. Asian J. 2020, 15, 1728–1735. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391. [Google Scholar] [CrossRef]
- Jeon, J.-W.; Sharma, R.; Meduri, P.; Arey, B.W.; Schaef, H.T.; Lutkenhaus, J.L.; Lemmon, J.P.; Thallapally, P.K.; Nandasiri, B.; Nune, S.K. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 7214–7222. [Google Scholar] [CrossRef]
- Chaikittisilp, W.; Katsuhiko, A.; Yusuke, Y. A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 2013, 1, 14–19. [Google Scholar] [CrossRef]
- Nath, K.; Bhunia, K.; Pradhan, D.; Biradha, K. MOF-templated cobalt nanoparticles embedded in nitrogen-doped porous carbon: A bifunctional electrocatalyst for overall water splitting. Nanoscale Adv. 2019, 1, 2293–2302. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.-M.; Muthurasu, A.; Chhetri, K.; Kim, H.Y. Metal-Organic Framework Assisted Vanadium Oxide Nanorods as Efficient Electrode Materials for Water Oxidation. J. Colloid Interface Sci. 2022, 618, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Xiang, D.; Li, P.; Zhang, Z.; Du, C.; Zhuang, Z.; Li, X.; Chen, W. Highly conductive bimetallic Ni–Fe metal organic framework as a novel electrocatalyst for water oxidation. ACS Sustain. Chem. Eng. 2019, 7, 9743–9749. [Google Scholar] [CrossRef]
- Zheng, X.; Cao, Y.; Liu, D.; Cai, M.; Ding, J.; Liu, X.; Wang, J.; Hu, W.; Zhong, C. Bimetallic metal–organic-framework/reduced graphene oxide composites as bifunctional electrocatalysts for rechargeable Zn–air batteries. ACS Appl. Mater. Interfaces 2019, 11, 15662–15669. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Zhu, J.; Zhao, Y.-Z.; Liang, Y.; He, J.; Chen, J. MOF-Based Metal-Doping-Induced Synthesis of Hierarchical Porous Cu–N/C Oxygen Reduction Electrocatalysts for Zn–Air Batteries. Small 2017, 13, 1700740. [Google Scholar] [CrossRef]
- Zhu, X.; Shi, X.; Asiri, A.M.; Luo, Y.; Sun, X. Efficient oxygen evolution electrocatalyzed by a Cu nanoparticle-embedded N-doped carbon nanowire array. Inorg. Chem. Front. 2018, 5, 1188–1192. [Google Scholar] [CrossRef]
- Qiao, L.; Zhu, A.; Yang, H.; Zeng, W.; Dong, R.; Tan, P.; Zhong, D.; Ma, Q.; Pan, J. Copper–nickel embedded into a nitrogen-doped carbon octahedron as an effective bifunctional electrocatalyst. Inorg. Chem. Front. 2018, 5, 2276–2283. [Google Scholar] [CrossRef]
- Yaqoob, L.; Noor, T.; Iqbal, N.; Nasir, H.; Zaman, K.T. Electrochemical synergies of Fe–Ni bimetallic MOF CNTs catalyst for OER in water splitting. J. Alloy. Compd. 2021, 850, 156583. [Google Scholar] [CrossRef]
- Nemiwal, M.; Gosu, V.; Zhang, T.-C.; Kumar, D. Metal organic frameworks as electrocatalysts: Hydrogen evolution reactions and overall water splitting. Int. J. Hydrog. Energy 2021, 46, 10216–10238. [Google Scholar] [CrossRef]
- Wang, B.; Shang, J.; Guo, C.; Zhang, J.-Z.; Zhu, F.-N.; Han, A.-J.; Liu, J.-F. A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays. Small 2019, 15, 1804761. [Google Scholar] [CrossRef]
- Du, S.; Ren, Z.-Y.; Zhang, J.; Wu, J.; Xi, W.; Zhu, J.-Q.; Fu, H.-G. Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chem. Commun. 2015, 51, 8066–8069. [Google Scholar] [CrossRef]
- Shahriary, L.; Anjali, A.A. Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng. 2014, 2, 58–63. [Google Scholar]
- Siegmund, D.; Metz, S.; Peinecke, V.; Warner, T.E.; Cremers, C.; Smolinka, T.; Segets, D.; Apfel, U. Crossing the valley of death: From fundamental to applied research in electrolysis. JACS 2021, 1, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; An, M.-Q.; Zhao, Y.-W.; Pi, S.; Li, C.-J.; Sun, W.; Wang, H.-G. Co nanoparticles encapsulated in N-doped carbon nanofibers as bifunctional catalysts for rechargeable Zn-air battery. Appl. Surf. Sci. 2019, 478, 560–566. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, H.-X.; He, H.-L.; Xu, X.-L.; Jin, Y.-D. A High-Performance Binary Ni–Co Hydroxide-based Water Oxidation Electrode with Three-Dimensional Coaxial Nanotube Array Structure. Adv. Funct. Mater. 2014, 24, 4698–4705. [Google Scholar] [CrossRef]
- Zhu, M.; Zhou, Y.-J.; Sun, Y.; Zhu, C.; Hu, L.-L.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z.-H. Cobalt phosphide/carbon dots composite as an efficient electrocatalyst for oxygen evolution reaction. Dalton Trans. 2018, 47, 5459–5464. [Google Scholar] [CrossRef]
- Han, L.; Xin-Yao, Y.; Xiong, W.L. Formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni–Co-mixed oxide for enhanced oxygen evolution. Adv. Mater. 2016, 28, 4601–4605. [Google Scholar] [CrossRef]
- Wu, Z.; Ji, W.; Hu, B.; Liang, H.; Xu, X.; Yu, Z.; Li, B.; Yu, S. Partially oxidized Ni nanoparticles supported on Ni-N co-doped carbon nanofibers as bifunctional electrocatalysts for overall water splitting. Nano Energy 2018, 51, 286–293. [Google Scholar] [CrossRef]
- Li, X.-F.; Lu, M.; Yu, H.; Zhang, T.; Liu, J.; Tian, J.; Yang, R. Copper-Metal Organic Frameworks Electrodeposited on Carbon Paper as an Enhanced Cathode for the Hydrogen Evolution Reaction. ChemElectroChem 2019, 6, 4507–4510. [Google Scholar] [CrossRef]
- Jayaramulu, K.; Masa, J.; Tomanec, O.; Peeters, D.; Ranc, V.; Schneemann, A.; Zboril, R.; Schuhmann, W.; Fischer, R.A. Nanoporous Nitrogen-Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metal-Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution. Adv. Funct. Mater. 2017, 27, 1700451. [Google Scholar] [CrossRef]
Catalysts | Electrolyte | OER (η10/mV) | HER (η10/mV) | Ref. |
---|---|---|---|---|
Co–Fe@NC–powder | 1 M KOH | 412 | 372 | [19] |
Co@NPC | 1 M NaOH | 360 | 325 | [21] |
Co/NCFs | 1 M KOH | 410 | - | [36] |
NiCo hydroxide tube | 0.1 M KOH | 460 | - | [37] |
CoP/CDs | 1 M KOH | 400 | - | [38] |
NiCo mixed oxide cages | 1 M KOH | 380 | - | [39] |
NiCo mixed oxide cubes | 1 M KOH | 430 | - | [39] |
PO–Ni/Ni–N–CNFs | 1 M KOH | 420 | - | [40] |
HKUST–1ED | 0.5 M H2SO4 | - | 490 | [41] |
NGO/Ni7S6 | 1 M KOH | - | 370 | [42] |
C–NiCu–BDC MOF arrays | 1 M KOH | 390 | 400 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, L.; Wagner, P.; Chen, J. Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water Splitting. Inorganics 2022, 10, 53. https://doi.org/10.3390/inorganics10040053
Jia L, Wagner P, Chen J. Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water Splitting. Inorganics. 2022; 10(4):53. https://doi.org/10.3390/inorganics10040053
Chicago/Turabian StyleJia, Lisha, Pawel Wagner, and Jun Chen. 2022. "Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water Splitting" Inorganics 10, no. 4: 53. https://doi.org/10.3390/inorganics10040053
APA StyleJia, L., Wagner, P., & Chen, J. (2022). Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water Splitting. Inorganics, 10(4), 53. https://doi.org/10.3390/inorganics10040053