Size Dependent Properties of Reactive Materials
Abstract
:1. Introduction
2. Size Effects of Materials Properties
2.1. Melting Temperature
2.2. Surface Energy
2.3. Specific Heat Capacity
2.4. Melting and Reaction Enthalpy
3. Consequences for Self-Sustained Reactions in Reactive Materials
3.1. Reaction Propagation Velocity
3.2. Ignition Temperature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gromov, D.; Sherchenkov, A.; Lebedev, E.; Babich, A.; Nemtseva, S.; Shaman, Y.; Maniecki, T.; Maniukiewicz, W.; Mierczynski, P.; Ciesielski, R. The influence of compression conditions on the peculiarities of self-propagating exothermal reaction in Al–Ni powder reactive materials. J. Therm. Anal. Calorim. 2018, 134, 35–44. [Google Scholar] [CrossRef]
- Barbee Jr, T.W.; Weihs, T. Ignitable Heterogeneous Stratified Structure for the Propagation of an Internal Exothermic Chemical Reaction along an Expanding Wavefront and Method of Making Same. U.S. Patent No. 5,538,795, 23 July 1996. [Google Scholar]
- Adams, D. Reactive multilayers fabricated by vapor deposition: A critical review. Thin Solid Films 2015, 576, 98–128. [Google Scholar] [CrossRef] [Green Version]
- Weihs, T. Fabrication and characterization of reactive multilayer films and foils. In Metallic Films for Electronic, Optical and Magnetic Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 160–243. [Google Scholar]
- Kaptay, G. On the size and shape dependence of the solubility of nano-particles in solutions. Int. J. Pharm. 2012, 430, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Kaptay, G. On the size dependence of molar and specific properties of independent nano-phases and those in contact with other phases. J. Mater. Eng. Perform. 2018, 27, 5023–5029. [Google Scholar] [CrossRef]
- Ansari, M.A. Modelling of size-dependent thermodynamic properties of metallic nanocrystals based on modified Gibbs–Thomson equation. Appl. Phys. A 2021, 127, 1–11. [Google Scholar] [CrossRef]
- Xiong, S.; Qi, W.; Cheng, Y.; Huang, B.; Wang, M.; Li, Y. Universal relation for size dependent thermodynamic properties of metallic nanoparticles. Phys. Chem. Chem. Phys. 2011, 13, 10652–10660. [Google Scholar] [CrossRef] [PubMed]
- Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Trenkle, J.; Koerner, L.; Tate, M.; Walker, N.; Gruner, S.; Weihs, T.; Hufnagel, T. Time-resolved x-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils. J. Appl. Phys. 2010, 107, 113511. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Wang, J. Experimental evidence of two-stage formation of Al3Ni in reactive Ni/Al multilayer foils. Scr. Mater. 2007, 56, 1055–1058. [Google Scholar] [CrossRef]
- Joshi, N.; Mathur, N.; Mane, T.; Sundaram, D. Size effect on melting temperatures of alumina nanocrystals: Molecular dynamics simulations and thermodynamic modeling. Comput. Mater. Sci. 2018, 145, 140–153. [Google Scholar] [CrossRef]
- Qi, W.; Wang, M.; Zhou, M.; Shen, X.; Zhang, X. Modeling cohesive energy and melting temperature of nanocrystals. J. Phys. Chem. Solids 2006, 67, 851–855. [Google Scholar] [CrossRef]
- Guisbiers, G.; Buchaillot, L. Modeling the melting enthalpy of nanomaterials. J. Phys. Chem. C 2009, 113, 3566–3568. [Google Scholar] [CrossRef]
- Kaptay, G. The Gibbs equation versus the Kelvin and the Gibbs-Thomson equations to describe nucleation and equilibrium of nano-materials. J. Nanosci. Nanotechnol. 2012, 12, 2625–2633. [Google Scholar] [CrossRef] [PubMed]
- Kaptay, G. The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science. Adv. Colloid Interface Sci. 2018, 256, 163–192. [Google Scholar] [CrossRef]
- Dreizin, E.; Allen, D.; Glumac, N.G. Depression of melting point for protective aluminum oxide films. Chem. Phys. Lett. 2015, 618, 63–65. [Google Scholar] [CrossRef]
- Puri, P.; Yang, V. Thermo-mechanical behavior of nano aluminum particles with oxide layers during melting. J. Nanopart. Res. 2010, 12, 2989–3002. [Google Scholar] [CrossRef]
- Kitsyuk, E.; Gromov, D.; Redichev, E.; Sagunova, I. Specifics of low-temperature melting and disintegration into drops of silver thin films. Prot. Met. Phys. Chem. Surf. 2012, 48, 304–309. [Google Scholar] [CrossRef]
- Sun, J.; Simon, S. The melting behavior of aluminum nanoparticles. Thermochim. Acta 2007, 463, 32–40. [Google Scholar] [CrossRef]
- Smith, J.M. Introduction to chemical engineering thermodynamics. J. Chem. Educ. 1950, 27. [Google Scholar] [CrossRef] [Green Version]
- Roark, R.; Young, W. Formulas for Stress and Strain, 5th ed.; McGraw-Hill: New York, NY, USA, 1975; Volume 180, p. 140. [Google Scholar]
- Lai, S.; Carlsson, J.; Allen, L. Melting point depression of Al clusters generated during the early stages of film growth: Nanocalorimetry measurements. Appl. Phys. Lett. 1998, 72, 1098–1100. [Google Scholar] [CrossRef]
- Zhao, M.; Zheng, W.; Li, J.; Wen, Z.; Gu, M.; Sun, C.Q. Atomistic origin, temperature dependence, and responsibilities of surface energetics: An extended broken-bond rule. Phys. Rev. B 2007, 75, 085427. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.; Fang, D.; Yang, Y. A temperature-dependent surface free energy model for solid single crystals. Appl. Surf. Sci. 2017, 393, 364–368. [Google Scholar] [CrossRef]
- Fu, B.-Q.; Liu, W.; Li, Z.-L. Calculation of the surface energy of bcc-metals with the empirical electron theory. Appl. Surf. Sci. 2009, 255, 8511–8519. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Kou, H.; Shao, J.; Deng, Y.; Zhang, X.; Ma, J.; Li, Y.; Zhang, X. Temperature and size dependent surface energy of metallic nano-materials. J. Appl. Phys. 2019, 125, 185105. [Google Scholar] [CrossRef]
- Jiang, Q.; Shi, H.; Zhao, M. Melting thermodynamics of organic nanocrystals. J. Chem. Phys. 1999, 111, 2176–2180. [Google Scholar] [CrossRef]
- Lu, H.; Jiang, Q. Size-dependent surface energies of nanocrystals. J. Phys. Chem. B 2004, 108, 5617–5619. [Google Scholar] [CrossRef]
- Jabbareh, M.A. Size, shape and temperature dependent surface energy of binary alloy nanoparticles. Appl. Surf. Sci. 2017, 426, 1094–1099. [Google Scholar] [CrossRef]
- Daintith, J. Debye Theory of Specific Heat; Oxford University Press: Oxford, UK, 2009. [Google Scholar] [CrossRef]
- Singh, M.; Lara, S.o.; Tlali, S. Effects of size and shape on the specific heat, melting entropy and enthalpy of nanomaterials. J. Taibah Univ. Sci. 2017, 11, 922–929. [Google Scholar] [CrossRef] [Green Version]
- Rupp, J.; Birringer, R. Enhanced specific-heat-capacity (c p) measurements (150–300 K) of nanometer-sized crystalline materials. Phys. Rev. B 1987, 36, 7888. [Google Scholar] [CrossRef]
- Sun, C.Q. Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 2007, 35, 1–159. [Google Scholar] [CrossRef]
- Lu, H.; Wen, Z.; Jiang, Q. Nucleus–liquid interfacial energy of elements. Colloids Surf. A Physicochem. Eng. Asp. 2006, 278, 160–165. [Google Scholar] [CrossRef]
- Eckert, J.; Holzer, J.; Ahn, C.; Fu, Z.; Johnson, W. Melting behavior of nanocrystalline aluminum powders. Nanostruct. Mater. 1993, 2, 407–413. [Google Scholar] [CrossRef]
- Fu, Q.; Zhu, J.; Xue, Y.; Cui, Z. Size-and shape-dependent melting enthalpy and entropy of nanoparticles. J. Mater. Sci. 2017, 52, 1911–1918. [Google Scholar] [CrossRef]
- Qi, W. Size effect on melting temperature of nanosolids. Phys. B Condens. Matter 2005, 368, 46–50. [Google Scholar] [CrossRef]
- Chung, S.W.; Guliants, E.A.; Bunker, C.E.; Jelliss, P.A.; Buckner, S.W. Size-dependent nanoparticle reaction enthalpy: Oxidation of aluminum nanoparticles. J. Phys. Chem. Solids 2011, 72, 719–724. [Google Scholar] [CrossRef]
- Huang, Z.-Y.; Li, X.-X.; Liu, Z.-J.; He, L.-M.; Tan, X.-C. Morphology effect on the kinetic parameters and surface thermodynamic properties of Ag3PO4 micro-/nanocrystals. J. Nanomater. 2015, 16, 388. [Google Scholar]
- Tang, H.; Huang, Z.; Xiao, M.; Liang, M.; Chen, L.; Tan, X. Theoretical and experimental study on the effects of particle size and temperature on the reaction kinetics of cubic nano-Cu2O. J. Nanopart. Res. 2017, 19, 1–13. [Google Scholar] [CrossRef]
- Mann, A.; Gavens, A.; Reiss, M.; Van Heerden, D.; Bao, G.; Weihs, T. Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils. J. Appl. Phys. 1997, 82, 1178–1188. [Google Scholar] [CrossRef]
- Gavens, A.; Van Heerden, D.; Mann, A.; Reiss, M.; Weihs, T. Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J. Appl. Phys. 2000, 87, 1255–1263. [Google Scholar] [CrossRef]
- Weihs, T.; Barbee, T.; Wall, M. Measuring enthalpies of formation using thick multilayer foils and differential scanning calorimetry. MRS Online Proc. Libr. (OPL) 1995, 382. [Google Scholar] [CrossRef] [Green Version]
- Knepper, R.; Snyder, M.R.; Fritz, G.; Fisher, K.; Knio, O.M.; Weihs, T.P. Effect of varying bilayer spacing distribution on reaction heat and velocity in reactive Al/Ni multilayers. J. Appl. Phys. 2009, 105, 083504. [Google Scholar] [CrossRef]
- Matsuda, T.; Inoue, S.; Namazu, T. Self-propagating explosive Al/Ni flakes fabricated by dual-source sputtering to mesh substrate. Jpn. J. Appl. Phys. 2014, 53, 06JM01. [Google Scholar] [CrossRef]
- Weihs, T. Self-propagating exothermic reactions in nanoscale multilayer materials. Chem. Phys. Nanostruct. Relat. NonEquilibrium Mater. 1997. [Google Scholar]
- Mossino, P. Some aspects in self-propagating high-temperature synthesis. Ceram. Int. 2004, 30, 311–332. [Google Scholar] [CrossRef]
- Naiborodenko, Y.S.; Itin, V.I. Gasless combustion of metal powder mixtures. Combust. Explos. Shock Waves 1975, 11, 293–300. [Google Scholar] [CrossRef]
- Rogachev, A.; Grigoryan, A.; Illarionova, E.; Kanel, I.; Merzhanov, A.; Nosyrev, A.; Sachkova, N.; Khvesyuk, V.; Tsygankov, P. Gasless combustion of Ti–Al bimetallic multilayer nanofoils. Combust. Explos. Shock Waves 2004, 40, 166–171. [Google Scholar] [CrossRef]
- Fritz, G.M.; Spey, S.J., Jr.; Grapes, M.D.; Weihs, T.P. Thresholds for igniting exothermic reactions in Al/Ni multilayers using pulses of electrical, mechanical, and thermal energy. J. Appl. Phys. 2013, 113, 014901. [Google Scholar] [CrossRef]
- Pauly, C.; Woll, K.; Gallino, I.; Stüber, M.; Leiste, H.; Busch, R.; Mücklich, F. Ignition in ternary Ru/Al-based reactive multilayers—Effects of chemistry and stacking sequence. J. Appl. Phys. 2018, 124, 195301. [Google Scholar] [CrossRef]
- Adams, D.P.; Reeves, R.V.; Abere, M.; Sobczak, C.; Yarrington, C.D.; Rodriguez, M.A.; Kotula, P.G. Ignition and self-propagating reactions in Al/Pt multilayers of varied design. J. Appl. Phys. 2018, 124, 095105. [Google Scholar] [CrossRef]
- Shuck, C.E.; Pauls, J.M.; Mukasyan, A.S. Ni/Al energetic nanocomposites and the solid flame phenomenon. J. Phys. Chem. C 2016, 120, 27066–27078. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shekhawat, D.; Vauth, M.; Pezoldt, J. Size Dependent Properties of Reactive Materials. Inorganics 2022, 10, 56. https://doi.org/10.3390/inorganics10040056
Shekhawat D, Vauth M, Pezoldt J. Size Dependent Properties of Reactive Materials. Inorganics. 2022; 10(4):56. https://doi.org/10.3390/inorganics10040056
Chicago/Turabian StyleShekhawat, Deepshikha, Maximilian Vauth, and Jörg Pezoldt. 2022. "Size Dependent Properties of Reactive Materials" Inorganics 10, no. 4: 56. https://doi.org/10.3390/inorganics10040056
APA StyleShekhawat, D., Vauth, M., & Pezoldt, J. (2022). Size Dependent Properties of Reactive Materials. Inorganics, 10(4), 56. https://doi.org/10.3390/inorganics10040056