Electrochemical Synthesis of Precursors of Al2O3-ZrO2 Ceramic Stabilized with Cerium Oxide and Magnesium Aluminate
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chevalier, J.; Liens, A.; Reveron, H.; Zhang, F.; Reynaud, P.; Douillard, T.; Preiss, L.; Sergo, V.; Lughi, V.; Swain, M.; et al. Forty years after the promise of «ceramic steel?»: Zirconia-based composites with a metal-like mechanical behavior. J. Am. Ceram. Soc. 2020, 103, 1482–1513. [Google Scholar] [CrossRef]
- Fu, L.-S.; Chen, G.-Q.; Fu, X.-S.; Zhou, W.-L. Insights into the ternary eutectic microstructure formed in intercolony regions in Al2O3–ZrO2(Y2O3) system. J. Am. Ceram. Soc. 2018, 102, 498–507. [Google Scholar] [CrossRef] [Green Version]
- Kimura, Y.; Kushi, T.; Unemoto, A.; Amezawa, K.; Kawada, T. Influence of aging on mechanical properties of yttria-doped zirconia. Ceramics 2018, 1, 287–303. [Google Scholar] [CrossRef] [Green Version]
- Lamas, D.G.; Lascalea, G.E.; Juarez, R.E.; Djurado, E.; Pérez, L.; de Reca, N.E.W. Metastable forms of the tetragonal phase incompositionally homogeneous, nanocrystalline zirconia–ceria powders synthesised by gel-combustion. J. Mater. Chem. 2003, 13, 904–910. [Google Scholar] [CrossRef]
- Herrmann, M.; Seipel, B.; Schilm, J.; Nickel, K.G.; Michael, G.; Krell, A. Hydrothermal corrosion of zirconia-toughened alumina (ZTA) at 200 °C. J. Eur. Ceram. Soc. 2005, 25, 1805–1812. [Google Scholar] [CrossRef]
- Chuang, C.-C.; Hsiang, H.-I.; Hwang, J.S.; Wang, T.S. Synthesis and characterization of Al2O3-Ce0.5Zr0.5O2 powders prepared by chemical coprecipitation method. J. Alloy. Compd. 2009, 470, 387–392. [Google Scholar] [CrossRef]
- Liu, G.; Xie, Z.; Wu, Y. Effectively inhibiting abnormal grain growth of alumina in ZTA with low-content fine-sized ZrO2 inclusions introduced by infiltration and in situ precipitation. J. Am. Ceram. Soc. 2010, 93, 4001–4004. [Google Scholar] [CrossRef]
- Manfredi, D.G.; Ambrosio, E.P.; Biamino, S.; Badini, C.F.; Fino, P. Al2O3–ZrO2 nanocomposites produced by solution combustion synthesis fol-lowed by ultrasonic milling. J. Ceram. Process. Res. 2011, 12, 207–211. [Google Scholar] [CrossRef]
- Huang, B.; Ren, R.; Zhang, Z.; Zheng, S. The improvement of dispersibility of YIG precursor prepared via chemical coprecipitation. J. Alloy. Compd. 2013, 558, 56–61. [Google Scholar] [CrossRef]
- Patil, S.B.; Jena, A.K.; Bhargava, P. Influence of ethanol amount during washing on deagglomeration of co-precipitated calcined nanocrystalline 3YSZ powders. Int. J. Appl. Ceram. Technol. 2013, 10, E247–E257. [Google Scholar] [CrossRef]
- Yu, W.; Zheng, Y.; Yu, Y.; Liu, X.; Yuan, Y. The microstructure, formation mechanism and sintering characteristics of Al2O3/ZrO2 supersaturated solid solution powders. Ceram. Int. 2021, 47, 25264–25273. [Google Scholar] [CrossRef]
- Promakhov, V.; Zhukov, A.; Dubkova, Y.; Zhukov, I.; Kovalchuk, S.; Zhukova, T.; Olisov, A.V.; Klimenko, V.A.; Savkina, N. Structure and properties of ZrO2–20%Al2O3 ceramic composites obtained using additive technologies. Materials 2018, 11, 2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Therese, G.H.A.; Kamath, P.V. Electrochemical synthesis of metal oxides and hydroxides. Chem. Mater. 2000, 12, 1195–1204. [Google Scholar] [CrossRef]
- Guo, W.-M.; Zeng, L.-Y.; Wu, L.-X.; Wang, H.-J.; Sun, S.-K.; Lin, H.-T.; Wu, S.-H.; Wang, C.-Y. Effect of CeO2 and Al2O3 contents on Ce-ZrO2/Al2O3 composites. J. Am. Ceram. Soc. 2018, 101, 2066–2073. [Google Scholar] [CrossRef]
- Abi, C.B.; Emrullahoglu, O.F.; Said, G. Microstructure and mechanical properties of MgO-stabilized ZrO2–Al2O3 dental composites. J. Mech. Behav. Biomed. Mater. 2013, 18, 123–131. [Google Scholar] [CrossRef]
- Rejab, N.A.; Azhar, A.Z.A.; Kian, K.S.; Ratnam, M.M.; Ahmad, Z.A. Effects of MgO addition on the phase, mechanical properties, and microstructure of zirconia-toughened alumina added with CeO2 (ZTA–CeO2) ceramic composite. Mater. Sci. Eng. A 2014, 595, 18–24. [Google Scholar] [CrossRef]
- Mitra, N.K.; Das Supratim Maitra, S.; Sengupta, U.; Basumajumdar, A. Effect of CeO2 on the sintering behaviour of zirconia–alumina composite. Ceram. Int. 2002, 28, 827–833. [Google Scholar] [CrossRef]
- Koltsov, I.; Smalc-Koziorowska, J.; Prześniak-Welenc, M.; Małysa, M.; Kimmel, G.; McGlynn, J.; Ganin, A.; Stelmakh, S. Mechanism of reduced sintering temperature of Al2O3–ZrO2 nanocomposites obtained by microwave hydrothermal synthesis. Materials 2018, 11, 829. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Tian, X.; Hu, C.; Luo, Y.; Peng, H.; Luo, J. Preparation of Al2O3-ZrO2 composite powder by co-precipitation method in an alcohol-water solution and its sntering behavior. J. Ceram. Process. Res. 2016, 17, 1181–1187. [Google Scholar]
- Mata, M.D.; Aldasb, K.; Ilegbusi, O.J. A two-phase flow model for hydrogen evolution in an electrochemical cell. Int. J. Hydrog. Energy 2004, 29, 1015–1023. [Google Scholar] [CrossRef]
- Bideau, D.; Mandin, P.; Benbouzid, M. Eulerian two-fluid model of alkaline water electrolysis for hydrogen production. Energies 2020, 13, 3394. [Google Scholar] [CrossRef]
- Kantarci, N.; Borak, F.; Ulgen, K.O. Bubble column reactors. Process Biochem. 2005, 40, 2263–2283. [Google Scholar] [CrossRef]
- Ota, K.I.; Kreysa, G.; Savinell, R.F. (Eds.) Encyclopedia of Applied Electrochemistry; Springer: New York, NY, USA, 2014. [Google Scholar]
- Mansouri, K.; Ibrik, K.; Bensalah, N.; Abdel-Wahab, A. Anodic dissolution of pure aluminum during electrocoagulation process: Influence of supporting electrolyte, initial pH, and current density. Ind. Eng. Chem. Res. 2011, 50, 13362–13372. [Google Scholar] [CrossRef]
- Guseva, O.; Schmutz, P.; Suter, T.; Trzebiatowsky, O. Modelling of anodic dissolution of pure aluminum in sodium chloride. Electrochim. Acta 2009, 54, 4514–4524. [Google Scholar] [CrossRef]
- Petrova, E.V.; Dresvyannikov, A.F.; Khairullina, A.I.; Mezhevich, Z.V. Physicochemical properties of alumina synthesized with electrogenerated reagents. Russ. J. Phys. Chem. A 2019, 93, 1399–1405. [Google Scholar] [CrossRef]
- Sakuma, T. Phase Transformation and microstructure of partially-stabilized zirconia. Trans. Jpn. Inst. Met. 1988, 29, 879–893. [Google Scholar] [CrossRef] [Green Version]
Sample Designation | Content, (wt%) | ξ, mV | Current Efficiency, % | |||
---|---|---|---|---|---|---|
Al2O3 | ZrO2 | MgO | CeO2 | |||
10 wt% ZrO2-Al2O3-CeO2 | 87.14 | 10.7 | - | 2.15 | 4.8 | 124 |
5 wt% ZrO2-Al2O3-MgO-CeO2 | 90.15 | 4.06 | 3.07 | 2.71 | 37.5 | 115 |
1 wt% ZrO2-Al2O3-MgO-CeO2 | 94.03 | 0.94 | 2.73 | 2.3 | 13.4 | 138 |
Sample Designation | Total Weight Loss, (wt%) | ||||
---|---|---|---|---|---|
10 wt% ZrO2-Al2O3-CeO2 | 34.38 | ||||
1 wt% ZrO2-Al2O3-MgO-CeO2 | 31.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dresvyannikov, A.F.; Petrova, E.V.; Kashfrazyeva, L.I. Electrochemical Synthesis of Precursors of Al2O3-ZrO2 Ceramic Stabilized with Cerium Oxide and Magnesium Aluminate. Inorganics 2022, 10, 57. https://doi.org/10.3390/inorganics10050057
Dresvyannikov AF, Petrova EV, Kashfrazyeva LI. Electrochemical Synthesis of Precursors of Al2O3-ZrO2 Ceramic Stabilized with Cerium Oxide and Magnesium Aluminate. Inorganics. 2022; 10(5):57. https://doi.org/10.3390/inorganics10050057
Chicago/Turabian StyleDresvyannikov, Alexander F., Ekaterina V. Petrova, and Laysan I. Kashfrazyeva. 2022. "Electrochemical Synthesis of Precursors of Al2O3-ZrO2 Ceramic Stabilized with Cerium Oxide and Magnesium Aluminate" Inorganics 10, no. 5: 57. https://doi.org/10.3390/inorganics10050057
APA StyleDresvyannikov, A. F., Petrova, E. V., & Kashfrazyeva, L. I. (2022). Electrochemical Synthesis of Precursors of Al2O3-ZrO2 Ceramic Stabilized with Cerium Oxide and Magnesium Aluminate. Inorganics, 10(5), 57. https://doi.org/10.3390/inorganics10050057