Carbonaceous FexP Synthesized via Carbothermic Reduction of Dephosphorization Slag as Hydrogen Evolution Catalyst for Water Splitting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Electrocatalysts
2.2. Physical and Chemical Characterization
2.3. Electrochemical Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Trinke, P.; Bensmann, B.; Hanke-Rauschenbach, R. Current density effect on hydrogen permeation in PEM water electrolyzers. Int. J. Hydrog. Energy 2017, 42, 14355–14366. [Google Scholar] [CrossRef]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Li, L.; Wang, P.; Shao, Q.; Huang, X. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.F.; Yin, H.; Fu, H.Q.; Zu, M.Y.; Yang, H.G.; Zhao, H. Activation strategies of water-splitting electrocatalysts. J. Mater. Chem. A 2020, 8, 10096–10129. [Google Scholar] [CrossRef]
- Xiang, C.; Papadantonakis, K.M.; Lewis, N.S. Principles and implementations of electrolysis systems for water splitting. Mater. Horiz. 2016, 3, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zhang, H.; Li, C.; Wang, X.; Liu, J.; Zhang, X. Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting. J. Energy Chem. 2020, 47, 333–345. [Google Scholar] [CrossRef]
- Zou, X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef]
- Xu, J.; Xiong, D.; Amorim, I.; Liu, L. Template-Free Synthesis of Hollow Iron Phosphide-Phosphate Composite Nanotubes for Use as Active and Stable Oxygen Evolution Electrocatalysts. ACS Appl. Nano Mater. 2018, 1, 617–624. [Google Scholar] [CrossRef]
- Xu, J.; Li, J.; Xiong, D.; Zhang, B.; Liu, Y.; Wu, K.H.; Amorim, I.; Li, W.; Liu, L. Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts. Chem. Sci. 2018, 9, 3470–3476. [Google Scholar] [CrossRef] [Green Version]
- Anantharaj, S.; Ede, S.R.; Karthick, K.; Sankar, S.S.; Sangeetha, K.; Karthik, P.E.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy Environ. Sci. 2018, 11, 744–771. [Google Scholar] [CrossRef]
- Weng, C.C.; Ren, J.T.; Yuan, Z.Y. Transition Metal Phosphide-Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review. ChemSusChem 2020, 13, 3357–3375. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Wang, C.J.; Fu, W.F.; Chen, Y. Metal Phosphides as Co-Catalysts for Photocatalytic and Photoelectrocatalytic Water Splitting. ChemSusChem 2017, 10, 4306–4323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callejas, J.F.; McEnaney, J.M.; Read, C.G.; Crompton, J.C.; Biacchi, A.J.; Popczun, E.J.; Gordon, T.R.; Lewis, N.S.; Schaak, R.E. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 2014, 8, 11101–11107. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Lee, S.; Kim, S.H.; Park, J.; Kim, S.; Kwon, S.H.; Bae, J.S.; Park, Y.S.; Kim, Y. Cobalt-Iron-Phosphate Hydrogen Evolution Reaction Electrocatalyst for Solar-Driven Alkaline Seawater Electrolyzer. Nanomaterials 2021, 11, 2989. [Google Scholar] [CrossRef]
- Bonfant, G.; Balestri, D.; Perego, J.; Comotti, A.; Bracco, S.; Koepf, M.; Gennari, M.; Marchiò, L. Phosphine Oxide Porous Organic Polymers Incorporating Cobalt(II) Ions: Synthesis, Characterization, and Investigation of H2 Production. ACS Omega 2022, 7, 6104–6112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, C.; Chen, W. FeP embedded in N, P dual-doped porous carbon nanosheets: An efficient and durable bifunctional catalyst for oxygen reduction and evolution reactions. J. Mater. Chem. A 2016, 4, 18723–18729. [Google Scholar] [CrossRef]
- Kwong, W.L.; Gracia-Espino, E.; Lee, C.C.; Sandström, R.; Wågberg, T.; Messinger, J. Cationic Vacancy Defects in Iron Phosphide: A Promising Route toward Efficient and Stable Hy-drogen Evolution by Electrochemical Water Splitting. ChemSusChem 2017, 10, 4544–4551. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Pei, H.; Chen, H.; Zuo, L.; Shen, J. Preparation of Fe2P and FeP catalysts for the hydrotreating reactions. Catal. Commun. 2017, 100, 202–205. [Google Scholar] [CrossRef]
- Cho, G.; Park, Y.; Kang, H.; Hong, Y.K.; Lee, T.; Ha, D.H. Transition metal-doped FeP nanoparticles for hydrogen evolution reaction catalysis. Appl. Surf. Sci. 2020, 510, 145427. [Google Scholar] [CrossRef]
- Wang, F.; Yang, X.; Dong, B.; Yu, X.; Xue, H.; Feng, L. A FeP powder electrocatalyst for the hydrogen evolution reaction. Electrochem. Commun. 2018, 92, 33–38. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, F.T.; Shi, Z.N.; Dong, B.; Dong, Y.W.; Wu, Z.X.; Wang, L.; Liu, C.G.; Chai, Y.M. Vanadium doped FeP nanoflower with optimized electronic structure for efficient hydrogen evolution. J. Colloid Interface Sci. 2022, 615, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Xi, X.; Xia, Y.; Cao, Y.; Xue, S.; Wan, S.; Dong, A.; Yang, D. 2D FeP Nanoframe Superlattices via Space-Confined Topochemical Transformation. Adv. Mater. 2022, 34, 2109145. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Yu, T.; Lin, J.; Lou, H.; Xu, H.; Yang, G. FeP3 monolayer as a high-efficiency catalyst for hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 25665–25671. [Google Scholar] [CrossRef]
- Ling, T.; Yan, D.Y.; Wang, H.; Jiao, Y.; Hu, Z.; Zheng, Y.; Zheng, L.; Mao, J.; Liu, H.; Du, X.W.; et al. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 2017, 8, 1509. [Google Scholar] [CrossRef] [Green Version]
- Štrbac, S.; Smiljanić, M.; Wakelin, T.; Potočnik, J.; Rakočević, Z. Hydrogen evolution reaction on bimetallic Ir/Pt(poly) electrodes in alkaline solution. Electrochim. Acta 2019, 306, 18–27. [Google Scholar] [CrossRef]
- McEnaney, J.M.; Crompton, J.C.; Callejas, J.F.; Popczun, E.J.; Read, C.G.; Lewis, N.S.; Schaak, R.E. Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles. Chem. Commun. 2014, 50, 11026–11028. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Mahmood, N.; Pan, L.; Shen, G.; Zhang, R.; Gao, R.; Aleem, F.E.; Yuan, X.; Zhang, X.; Zou, J.J. Iron phosphide encapsulated in P-doped graphitic carbon as efficient and stable electrocatalyst for hydrogen and oxygen evolution reactions. Nanoscale 2018, 10, 21327–21334. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Zheng, B.; Yang, D.; Zhang, W.; Chen, Y. Self-assembled Ni2P/FeP heterostructural nanoparticles embedded in N-doped graphene nanosheets as highly efficient and stable multifunctional electrocatalyst for water splitting. Electrochim. Acta 2019, 318, 449–459. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, C.; Liu, Z.; Yuan, S.; Yang, G.; Wang, K.; Li, X.; Li, N.; Jing, S. Self-Supported Mesoporous Iron Phosphide with High Active-Site Density for Electrocatalytic Hydrogen Evolution in Acidic and Alkaline Media. ChemElectroChem 2020, 7, 4943–4948. [Google Scholar] [CrossRef]
C (Mass%) | Mn (Mass%) | P (Mass%) | Fe (Mass%) | Si (Mass%) | S (Mass%) | |
---|---|---|---|---|---|---|
FexP | 0.02 | 0.56 | 14.53 | 84.74 | 0.21 | 0.01 |
FexP/C | 3.58 | 0.73 | 36.80 | 58.61 | 0.19 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Liu, Y.; Peng, S.; Lin, L. Carbonaceous FexP Synthesized via Carbothermic Reduction of Dephosphorization Slag as Hydrogen Evolution Catalyst for Water Splitting. Inorganics 2022, 10, 70. https://doi.org/10.3390/inorganics10060070
He S, Liu Y, Peng S, Lin L. Carbonaceous FexP Synthesized via Carbothermic Reduction of Dephosphorization Slag as Hydrogen Evolution Catalyst for Water Splitting. Inorganics. 2022; 10(6):70. https://doi.org/10.3390/inorganics10060070
Chicago/Turabian StyleHe, Sai, Yaqin Liu, Shanlong Peng, and Lu Lin. 2022. "Carbonaceous FexP Synthesized via Carbothermic Reduction of Dephosphorization Slag as Hydrogen Evolution Catalyst for Water Splitting" Inorganics 10, no. 6: 70. https://doi.org/10.3390/inorganics10060070
APA StyleHe, S., Liu, Y., Peng, S., & Lin, L. (2022). Carbonaceous FexP Synthesized via Carbothermic Reduction of Dephosphorization Slag as Hydrogen Evolution Catalyst for Water Splitting. Inorganics, 10(6), 70. https://doi.org/10.3390/inorganics10060070