New Carboxylate Anionic Sm-MOF: Synthesis, Structure and Effect of the Isomorphic Substitution of Sm3+ with Gd3+ and Tb3+ Ions on the Luminescent Properties
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Composition
2.2. Crystal Structure
2.3. Luminescent Properties
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nehra, K.; Dalal, A.; Hooda, A.; Bhagwan, S.; Saini, R.K.; Mari, B.; Kumar, S.; Singh, D. Lanthanides β-Diketonate Complexes as Energy-Efficient Emissive Materials: A Review. J. Mol. Struct. 2022, 1249, 131531. [Google Scholar] [CrossRef]
- Álvarez, Á.L.; Coya, C. OLEDs Based on Ln(III) Complexes for near-Infrared Emission. In Lanthanide-Based Multifunctional Materials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 133–170. ISBN 9780128138403. [Google Scholar]
- Zinna, F.; Pasini, M.; Galeotti, F.; Botta, C.; Di Bari, L.; Giovanella, U. Design of Lanthanide-Based OLEDs with Remarkable Circularly Polarized Electroluminescence. Adv. Funct. Mater. 2017, 27, 1603719. [Google Scholar] [CrossRef]
- Taydakov, I.V.; Akkuzina, A.A.; Avetisov, R.I.; Khomyakov, A.V.; Saifutyarov, R.R.; Avetissov, I.C. Effective Electroluminescent Materials for OLED Applications Based on Lanthanide 1.3-Diketonates Bearing Pyrazole Moiety. J. Lumin. 2016, 177, 31–39. [Google Scholar] [CrossRef]
- Thejo Kalyani, N.; Dhoble, S.J.; Pode, R.B. Fabrication of Red Organic Light Emitting Diodes (OLEDs) Using EuxY(1-x)(TTA)3Phen Organic Complexes for Solid State Lighting. Adv. Mater. Lett. 2011, 2, 65–70. [Google Scholar] [CrossRef]
- DaCosta, M.V.; Doughan, S.; Han, Y.; Krull, U.J. Lanthanide Upconversion Nanoparticles and Applications in Bioassays and Bioimaging: A Review. Anal. Chim. Acta 2014, 832, 1–33. [Google Scholar] [CrossRef]
- Bünzli, J.C.G. Luminescence Bioimaging with Lanthanide Complexes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; Volume 9781119950, ISBN 9781118682760. [Google Scholar]
- Ning, Y.; Zhu, M.; Zhang, J.L. Near-Infrared (NIR) Lanthanide Molecular Probes for Bioimaging and Biosensing. Coord. Chem. Rev. 2019, 399, 213028. [Google Scholar] [CrossRef]
- Wang, J.; Yu, M.; Chen, L.; Li, Z.; Li, S.; Jiang, F.; Hong, M. Construction of a Stable Lanthanide Metal-Organic Framework as a Luminescent Probe for Rapid Naked-Eye Recognition of Fe3+ and Acetone. Molecules 2021, 26, 1695. [Google Scholar] [CrossRef]
- Gontcharenko, V.E.; Lunev, A.M.; Taydakov, I.V.; Korshunov, V.M.; Drozdov, A.A.; Belousov, Y.A. Luminescent Lanthanide-Based Sensor for H2O Detection in Aprotic Solvents and D2O. IEEE Sens. J. 2019, 19, 7365–7372. [Google Scholar] [CrossRef]
- Xia, T.; Wan, Y.; Li, Y.; Zhang, J. Highly Stable Lanthanide Metal–Organic Framework as an Internal Calibrated Luminescent Sensor for Glutamic Acid, a Neuropathy Biomarker. Inorg. Chem. 2020, 59, 8809–8817. [Google Scholar] [CrossRef]
- Lunev, A.M.; Belousov, Y.A. Luminescent Sensor Materials Based on Rare-Earth Element Complexes for Detecting Cations, Anions, and Small Molecules. Russ. Chem. Bull. 2022, 71, 825–857. [Google Scholar] [CrossRef]
- Brites, C.D.S.; Balabhadra, S.; Carlos, L.D. Lanthanide-Based Thermometers: At the Cutting-Edge of Luminescence Thermometry. Adv. Opt. Mater. 2019, 7, 1801239. [Google Scholar] [CrossRef] [Green Version]
- Bao, G.; Wong, K.-L.; Jin, D.; Tanner, P.A. A Stoichiometric Terbium-Europium Dyad Molecular Thermometer: Energy Transfer Properties. Light Sci. Appl. 2018, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Runowski, M. Pressure and Temperature Optical Sensors: Luminescence of Lanthanide-Doped Nanomaterials for Contactless Nanomanometry and Nanothermometry. In Handbook of Nanomaterials in Analytical Chemistry: Modern Trends in Analysis; Elsevier: Amsterdam, The Netherlands, 2019; pp. 227–273. ISBN 9780128166994. [Google Scholar]
- Lyubov, D.M.; Carneiro Neto, A.N.; Fayoumi, A.; Lyssenko, K.A.; Korshunov, V.M.; Taydakov, I.V.; Salles, F.; Guari, Y.; Larionova, J.; Carlos, L.D.; et al. Employing Three-Blade Propeller Lanthanide Complexes as Molecular Luminescent Thermometers: Study of Temperature Sensing through a Concerted Experimental/Theory Approach. J. Mater. Chem. C 2022, 10, 7176–7188. [Google Scholar] [CrossRef]
- Bünzli, J.; Eliseeva, S. V Basics of Lanthanides Photophysics. In Lanthanide Luminescence; Springer Series on Fluorescence: Methods and Applications; Hänninen, P., Härmä, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 7, pp. 1–45. [Google Scholar] [CrossRef] [Green Version]
- Latva, M.; Takalob, H.; Mukkala, V.M.; Matachescu, C.; Rodríguez-Ubis, J.C.; Kankare, J. Correlation between the Lowest Triplet State Energy Level of the Ligand and Lanthanide(III) Luminescence Quantum Yield. J. Lumin. 1997, 75, 149–169. [Google Scholar] [CrossRef]
- Shi, M.; Li, F.; Yi, T.; Zhang, D.; Hu, H.; Huang, C. Tuning the Triplet Energy Levels of Pyrazolone Ligands to Match the 5D0 Level of Europium (III). Inorg. Chem. 2005, 44, 8929–8936. [Google Scholar] [CrossRef]
- Belousov, Y.A.; Korshunov, V.M.; Metlin, M.T.; Metlina, D.A.; Kiskin, M.A.; Aminev, D.F.; Datskevich, N.P.; Drozdov, A.A.; Pettinari, C.; Marchetti, F.; et al. Towards Bright Dysprosium Emitters: Single and Combined Effects of Environmental Symmetry, Deuteration, and Gadolinium Dilution. Dye. Pigment. 2022, 199, 110078. [Google Scholar] [CrossRef]
- Rodrigues, C.V.; Luz, L.L.; Dutra, J.D.L.; Junior, S.A.; Malta, O.L.; Gatto, C.C.; Streit, H.C.; Freire, R.O.; Wickleder, C.; Rodrigues, M.O. Unusual Photoluminescence Properties of the 3D Mixed-Lanthanide-Organic Frameworks Induced by Dimeric Structures: A Theoretical and Experimental Approach. Phys. Chem. Chem. Phys. 2014, 16, 14858–14866. [Google Scholar] [CrossRef]
- Litsis, O.O.; Ovchynnikov, V.A.; Scherbatskii, V.P.; Nedilko, S.G.; Sliva, T.Y.; Dyakonenko, V.V.; Shishkin, O.V.; Davydov, V.I.; Gawryszewska, P.; Amirkhanov, V.M. Lanthanide Mixed-Ligand Complexes of the [Ln(CAPh)3(Phen)] and [LaxEu1-x(CAPh)3(Phen)] (CAPh = Carbacylamidophosphate) Type. A Comparative Study of Their Spectral Properties. Dalt. Trans. 2015, 44, 15508–15522. [Google Scholar] [CrossRef]
- Belousov, Y.A.; Goncharenko, V.E.; Lunev, A.M.; Sidoruk, A.V.; Bezzubov, S.I.; Taidakov, I.V. New Heteroligand Europium and Gadolinium Formate Triazole Dicarboxylates: Synthesis, Structures, and Luminescence Properties. Russ. J. Coord. Chem. Khimiya 2020, 46, 394–401. [Google Scholar] [CrossRef]
- Demakov, P.A.; Vasileva, A.A.; Volynkin, S.S.; Ryadun, A.A.; Samsonenko, D.G.; Fedin, V.P.; Dybtsev, D.N. Cinnamal Sensing and Luminescence Color Tuning in a Series of Rare-Earth Metal−organic Frameworks with Trans-1,4-Cyclohexanedicarboxylate. Molecules 2021, 26, 5145. [Google Scholar] [CrossRef]
- Demakov, P.A.; Ryadun, A.A.; Dorovatovskii, P.V.; Lazarenko, V.A.; Samsonenko, D.G.; Brylev, K.A.; Fedin, V.P.; Dybtsev, D.N. Intense Multi-Colored Luminescence in a Series of Rare-Earth Metal-Organic Frameworks with Aliphatic Linkers. Dalt. Trans. 2021, 50, 11899–11908. [Google Scholar] [CrossRef] [PubMed]
- Varaksina, E.A.; Taydakov, I.V.; Ambrozevich, S.A.; Selyukov, A.S.; Lyssenko, K.A.; Jesus, L.T.; Freire, R.O. Influence of Fluorinated Chain Length on Luminescent Properties of Eu3+ β-Diketonate Complexes. J. Lumin. 2018, 196, 161–168. [Google Scholar] [CrossRef]
- Andrews, P.C.; Deacon, G.B.; Gee, W.J.; Junk, P.C.; Urbatsch, A. Synthesis and Characterisation of Thiophene-Functionalised Lanthanoid Diketonate Clusters with Solvent-Modulated Europium Luminescence. Eur. J. Inorg. Chem. 2012, 2012, 3273–3282. [Google Scholar] [CrossRef]
- Belousov, Y.A.; Utochnikova, V.V.; Kuznetsov, S.S.; Andreev, M.N.; Dolzhenko, V.D.; Drozdov, A.A. New Rare-Earth Metal Acyl Pyrazolonates: Synthesis, Crystals Structures, and Luminescence Properties. Russ. J. Coord. Chem. Khimiya 2014, 40, 627–633. [Google Scholar] [CrossRef]
- Belousov, Y.A.; Drozdov, A.A. Lanthanide Acylpyrazolonates: Synthesis, Properties and Structural Features. Russ. Chem. Rev. 2012, 81, 1159–1169. [Google Scholar] [CrossRef]
- Belousov, Y.A.; Drozdov, A.A.; Verteletskii, P.P.; Prishchenko, A.A.; Livantsova, L.I.; Novikova, O.P. Mixed-Ligand Lanthanide Complexes with Acylpyrazolones and Phosphorus-Containing Ligands. Russ. J. Coord. Chem. Khimiya 2013, 39, 278–282. [Google Scholar] [CrossRef]
- Hu, Z.; Deibert, B.J.; Li, J. Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection. Chem. Soc. Rev. 2014, 43, 5815–5840. [Google Scholar] [CrossRef] [Green Version]
- Belousov, Y.A.; Drozdov, A.A.; Taydakov, I.V.; Marchetti, F.; Pettinari, R.; Pettinari, C. Lanthanide Azolecarboxylate Compounds: Structure, Luminescent Properties and Applications. Coord. Chem. Rev. 2021, 445, 214084. [Google Scholar] [CrossRef]
- Janicki, R.; Mondry, A.; Starynowicz, P. Carboxylates of Rare Earth Elements. Coord. Chem. Rev. 2017, 340, 98–133. [Google Scholar] [CrossRef]
- Barsukova, M.O.; Samsonenko, D.G.; Fedin, V.P. Crystal Structure of Metal-Organic Frameworks Based on Terbium and 1,4-Naphthalenedicarboxylic Acid. J. Struct. Chem. 2020, 61, 1090–1096. [Google Scholar] [CrossRef]
- Yudina, Y.A.; Samsonova, A.M.; Bolotov, V.A.; Demakov, P.A.; Samsonenko, D.G.; Fedin, V.P.; Dybtsev, D.N. Metal-Organic Coordination Polymers of Lanthanides(Iii) With Thienothiophendicarboxylate Ligands. J. Struct. Chem. 2021, 62, 1599–1606. [Google Scholar] [CrossRef]
- Beeby, A.; Clarkson, I.M.; Dickins, R.S.; Faulkner, S.; Parker, D.; Royle, L.; De Sousa, A.S.; Williams, J.A.G.; Woods, M. Non-Radiative Deactivation of the Excited States of Europium, Terbium and Ytterbium Complexes by Proximate Energy-Matched OH, NH and CH Oscillators: An Improved Luminescence Method for Establishing Solution Hydration States. J. Chem. Soc. Perkin Trans. 2 1999, 2, 493–503. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, S.Y.; Song, H.-B.; Shi, W.; Zhao, B.; Cheng, P. One-Dimensional Lanthanide Coordination Polymers as Promising Luminescent Materials. Inorg. Chim. Acta 2009, 362, 2749–2755. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, N.; Zhang, S.-Y.; Zhao, X.-Q.; Cheng, P. From 1D Zigzag Chains to 3D Chiral Frameworks: Synthesis and Properties of Praseodymium(iii) and Neodymium(iii) Coordination Polymers. RSC Adv. 2014, 4, 40643–40650. [Google Scholar] [CrossRef]
- Shi, W.; Chen, X.Y.; Xu, N.; Song, H.-B.; Zhao, B.; Cheng, P.; Liao, D.Z.; Yan, S.P. Synthesis, Crystal Structures, and Magnetic Properties of 2D Manganese(II) and 1D Gadolinium(III) Coordination Polymers with 1H-1,2,3-Triazole-4,5- Dicarboxylic Acid. Eur. J. Inorg. Chem. 2006, 4931–4937. [Google Scholar] [CrossRef]
- Yuan, G.; Shao, K.Z.; Wang, X.L.; Lan, Y.Q.; Du, D.Y.; Su, Z.M. A Series of Novel Chiral Lanthanide Coordination Polymers with Channels Constructed from 16Ln-Based Cage-like Building Units. Cryst. Eng. Comm. 2010, 12, 1147–1152. [Google Scholar] [CrossRef]
- Chen, C.-J.; Gao, J.-Y.; Zhao, X.; Chang, L.-M.; Liu, Y.-L.; Mo, H.-H.; Yue, S.-T. 3D Coordination Polymers with Chiral Structures, [Ln2(Tda)2(H2O)3]·5H2O: Hydrothermal Synthesis, Structural Characterization, and Luminescent Properties. Z. Anorg. Allg. Chem. 2012, 638, 2324–2328. [Google Scholar] [CrossRef]
- Zou, J.Y.; Shi, W.; Xu, N.; Gao, H.L.; Cui, J.Z.; Cheng, P. Cobalt(II)-Lanthanide(III) Heterometallic Metal-Organic Frameworks with Unique (6,6)-Connected Nia Topologies with 1H-1,2,3-Triazole-4,5-Dicarboxylic Acid: Syntheses, Structures and Magnetic Properties. Eur. J. Inorg. Chem. 2014, 2014, 407–412. [Google Scholar] [CrossRef]
- Cao, X.X.; Chen, L.Z.; Pan, Q.J.; Huang, Y. Synthesis, Structures, Luminescent and Dielectric Properties of Lanthanide Coordination Polymers. J. Coord. Chem. 2016, 69, 2580–2590. [Google Scholar] [CrossRef]
- Jin, J.C.; Tong, W.Q.; Fu, A.Y.; Xie, C.G.; Chang, W.G.; Wu, J.; Xu, G.N.; Zhang, Y.N.; Li, J.; Li, Y.; et al. Four Unexpected Lanthanide Coordination Polymers Involving in Situ Reaction of Solvent N, N-Dimethylformamide. J. Solid State Chem. 2015, 225, 216–221. [Google Scholar] [CrossRef]
- Demakov, P.A.; Ryadun, A.A.; Samsonenko, D.G.; Dybtsev, D.N.; Fedin, V.P. Structure and Luminescent Properties of Europium(III) Coordination Polymers With Thiophene Ligands. J. Struct. Chem. 2020, 61, 1965–1974. [Google Scholar] [CrossRef]
- Kistaiah, P.; Sathyanarayana Murthy, K.; Iyengar, L.; Krishna Rao, K.V. X-Ray Studies on the High Pressure Behaviour of Some Rare-Earth Formates. J. Mater. Sci. 1981, 16, 2321–2323. [Google Scholar] [CrossRef]
- Bezzubov, S.I.; Churakov, A.V.; Belousov, Y.A.; Bilyalova, A.A.; Lavrova, M.A.; Zharinova, I.S.; Kiselev, Y.M.; Dolzhenko, V.D. L -Alanine/Nickel-Induced Size Sorting of Lanthanide(III) Ions in 4f-4f′ Heterometallic Complexes. Cryst. Growth Des. 2017, 17, 1166–1172. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, S.-H.; Bai, F.-Y.; Xing, Y.-H.; Sun, L.-X. Stable Lanthanide–Organic Framework Materials Constructed by a Triazolyl Carboxylate Ligand: Multifunction Detection and White Luminescence Tuning. Inorg. Chem. 2018, 57, 12850–12859. [Google Scholar] [CrossRef] [PubMed]
- Gontcharenko, V.E.; Kiskin, M.A.; Dolzhenko, V.D.; Korshunov, V.M.; Taydakov, I.V.; Belousov, Y.A. Mono- and Mixed Metal Complexes of Eu3+, Gd3+, and Tb3+ with a Diketone, Bearing Pyrazole Moiety and Chf2-Group: Structure, Color Tuning, and Kinetics of Energy Transfer between Lanthanide Ions. Molecules 2021, 26, 2655. [Google Scholar] [CrossRef]
- Tobita, S.; Arakawa, M.; Tanaka, I. Electronic Relaxation Processes of Rare Earth Chelates of Benzoyltrifluoroacetone. J. Phys. Chem. 1984, 88, 2697–2702. [Google Scholar] [CrossRef]
- Tobita, S.; Arakawa, M.; Tanaka, I. The Paramagnetic Metal Effect on the Ligand Localized S1.Apprx..Fwdarw. T1 Intersystem Crossing in the Rare-Earth-Metal Complexes with Methyl Salicylate. J. Phys. Chem. 1985, 89, 5649–5654. [Google Scholar] [CrossRef]
- Huang, H.; Bu, Y. Effect of Paramagnetic Open-Shell Gadolinium(III) Texaphyrin on Its Kinetics and Electronic Structures in Fluorescence and Phosphorescence Emission States. J. Phys. Chem. C 2019, 123, 28327–28335. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Platon Squeeze: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX 2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Plaut, G.W.E. The Preparation of 1,5,6-Trimethylbenzotriazole and 1-Methyl-V-Triazole-4,5-Dicarboxylic Acid. J. Am. Chem. Soc. 1954, 76, 5801–5802. [Google Scholar] [CrossRef]
- Zincke, T.; Helmert, B. Ueber Azimidoverbindungen; Ueber Azimidouramidobenzoësäuren Und Azimidobenzoësäuren. Justus Liebig’s Ann. Chem. 1896, 291, 313–342. [Google Scholar] [CrossRef] [Green Version]
{[NMe2H2][Ln(TDA)(HCOO)]} | Gd | Sm | Eu [23] |
---|---|---|---|
Space group | Pna21 | ||
a, Å | 12.8145(9) | 12.8521(5) | 12.7834(4) |
b, Å | 9.9105(6) | 10.0035(5) | 10.0323(3) |
c, Å | 8.8666(6) | 8.9281(7) | 8.8998(4) |
α, β, γ | 90° | ||
1O-Ln, Å | 2.44(1) | 2.443(7) | 2.440(7) |
1N-Ln, Å | 2.58(5) | 2.58(1) | 2.572(6) |
5O-Ln, Å | 2.36(1) | 2.36(1) | 2.31(1) |
6O-Ln, Å | 2.32(2) | 2.334(9) | 2.333(9) |
3O-Ln, Å | 2.379(6) | 2.37(4) | 2.374(4) |
4O-Ln, Å | 2.438(8) | 2.435(4) | 2.432(5) |
2O-Ln, Å | 2.33(1) | 2.33(1) | 2.36(1) |
3N-Ln, Å | 2.54(1) | 2.555(5) | 2.554(6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, A.A.; Gontcharenko, V.E.; Lunev, A.M.; Sidoruk, A.V.; Arkhipov, I.A.; Taydakov, I.V.; Belousov, Y.A. New Carboxylate Anionic Sm-MOF: Synthesis, Structure and Effect of the Isomorphic Substitution of Sm3+ with Gd3+ and Tb3+ Ions on the Luminescent Properties. Inorganics 2022, 10, 104. https://doi.org/10.3390/inorganics10080104
Ivanova AA, Gontcharenko VE, Lunev AM, Sidoruk AV, Arkhipov IA, Taydakov IV, Belousov YA. New Carboxylate Anionic Sm-MOF: Synthesis, Structure and Effect of the Isomorphic Substitution of Sm3+ with Gd3+ and Tb3+ Ions on the Luminescent Properties. Inorganics. 2022; 10(8):104. https://doi.org/10.3390/inorganics10080104
Chicago/Turabian StyleIvanova, Anna A., Victoria E. Gontcharenko, Alexey M. Lunev, Anastasia V. Sidoruk, Ilya A. Arkhipov, Ilya V. Taydakov, and Yuriy A. Belousov. 2022. "New Carboxylate Anionic Sm-MOF: Synthesis, Structure and Effect of the Isomorphic Substitution of Sm3+ with Gd3+ and Tb3+ Ions on the Luminescent Properties" Inorganics 10, no. 8: 104. https://doi.org/10.3390/inorganics10080104
APA StyleIvanova, A. A., Gontcharenko, V. E., Lunev, A. M., Sidoruk, A. V., Arkhipov, I. A., Taydakov, I. V., & Belousov, Y. A. (2022). New Carboxylate Anionic Sm-MOF: Synthesis, Structure and Effect of the Isomorphic Substitution of Sm3+ with Gd3+ and Tb3+ Ions on the Luminescent Properties. Inorganics, 10(8), 104. https://doi.org/10.3390/inorganics10080104