Ab Initio Study of Structure and Transport Properties of Warm Dense Nitric Oxide
Abstract
:1. Introduction
2. Computational Method
2.1. Equation of State Calculations
2.2. Calculations for Transport Properties
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jourdain, N.; Lecherbourg, L.; Recoules, V.; Renaudin, P.; Dorchies, F. Ultrafast Thermal Melting in Nonequilibrium Warm Dense Copper. Phys. Rev. Lett. 2021, 126, 065001. [Google Scholar] [CrossRef] [PubMed]
- Guarguaglini, M.; Soubiran, F.; Hernandez, J.A.; Benuzzi-Mounaix, A.; Bolis, R.; Brambrink, E.; Vinci, T.; Ravasio, A. Electrical conductivity of warm dense silica from double-shock experiments. Nat. Commun. 2021, 12, 840. [Google Scholar] [CrossRef] [PubMed]
- Militzer, B.; Gonzalez-Cataldo, F.; Zhang, S.; Driver, K.P.; Soubiran, F. First-principles equation of state database for warm dense matter computation. Phys. Rev. E 2021, 103, 013203. [Google Scholar] [CrossRef] [PubMed]
- Driver, K.P.; Militzer, B. First-principles equation of state calculations of warm dense nitrogen. Phys. Rev. B 2016, 93, 064101. [Google Scholar] [CrossRef]
- Driver, K.P.; Soubiran, F.; Zhang, S.; Militzer, B. First-principles equation of state and electronic properties of warm dense oxygen. J. Chem. Phys. 2015, 143, 164507. [Google Scholar] [CrossRef]
- Tracy, S.J.; Turneaure, S.J.; Duffys, T.S. In situ X-Ray Diffraction of Shock-Compressed Fused Silica. Phys. Rev. Lett. 2018, 120, 135702. [Google Scholar] [CrossRef]
- Millot, M.; Hamel, S.; Rygg, J.R.; Celliers, P.M.; Collins, G.W.; Coppari, F.; Fratanduono, D.E.; Jeanloz, R.; Swift, D.C.; Eggert, J.H. Experimental evidence for superionic water ice using shock compression. Nat. Phys. 2018, 14, 297–302. [Google Scholar] [CrossRef]
- Li, Z.-G.; Chen, Q.-F.; Gu, Y.-J.; Zheng, J.; Zhang, W.; Liu, L.; Li, G.-J.; Wang, Z.-Q.; Dai, J.-Y. Multishock compression of dense cryogenic hydrogen-helium mixtures up to 60 GPa: Validating the equation of state calculated from first principles. Phys. Rev. B 2018, 98, 064101. [Google Scholar] [CrossRef]
- Hu, S.X.; Militzer, B.; Collins, L.A.; Driver, K.P.; Kress, J.D. First-principles prediction of the softening of the silicon shock Hugoniot curve. Phys. Rev. B 2016, 94, 094109. [Google Scholar] [CrossRef]
- Militzer, B.; Driver, K.P. Development of Path Integral Monte Carlo Simulations with Localized Nodal Surfaces for Second-Row Elements. Phys. Rev. Lett. 2015, 115, 176403. [Google Scholar] [CrossRef]
- Ma, Q.; Dai, J.; Kang, D.; Murillo, M.S.; Hou, Y.; Zhao, Z.; Yuan, J. Extremely Low Electron-ion Temperature Relaxation Rates in Warm Dense Hydrogen: Interplay between Quantum Electrons and Coupled Ions. Phys. Rev. Lett. 2019, 122, 015001. [Google Scholar] [CrossRef]
- Schöttler, M.; Redmer, R. Ab Initio Calculation of the Miscibility Diagram for Hydrogen-Helium Mixtures. Phys. Rev. Lett. 2018, 120, 115703. [Google Scholar] [CrossRef]
- Monserrat, B.; Drummond, N.D.; Dalladay-Simpson, P.; Howie, R.T.; Lopez Rios, P.; Gregoryanz, E.; Pickard, C.J.; Needs, R.J. Structure and Metallicity of Phase V of Hydrogen. Phys. Rev. Lett. 2018, 120, 255701. [Google Scholar] [CrossRef]
- Mazzola, G.; Helled, R.; Sorella, S. Phase Diagram of Hydrogen and a Hydrogen-Helium Mixture at Planetary Conditions by Quantum Monte Carlo Simulations. Phys. Rev. Lett. 2018, 120, 025701. [Google Scholar] [CrossRef]
- Borinaga, M.; Ibanez-Azpiroz, J.; Bergara, A.; Errea, I. Strong Electron-Phonon and Band Structure Effects in the Optical Properties of High Pressure Metallic Hydrogen. Phys. Rev. Lett. 2018, 120, 057402. [Google Scholar] [CrossRef]
- Preising, M.; Redmer, R. High-pressure melting line of helium from ab initio calculations. Phys. Rev. B 2019, 100, 184107. [Google Scholar] [CrossRef]
- Preising, M.; Lorenzen, W.; Becker, A.; Redmer, R.; Knudson, M.D.; Desjarlais, M.P. Equation of state and optical properties of warm dense helium. Phys. Plasmas 2018, 25, 012706. [Google Scholar] [CrossRef]
- Sun, J.; Martinez-Canales, M.; Klug, D.D.; Pickard, C.J.; Needs, R.J. Persistence and eventual demise of oxygen molecules at terapascal pressures. Phys. Rev. Lett. 2012, 108, 045503. [Google Scholar] [CrossRef]
- Bastea, M.; Mitchell, A.; Nellis, W. High Pressure Insulator-Metal Transition in Molecular Fluid Oxygen. Phys. Rev. Lett. 2001, 86, 3108–3111. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, Q.; Li, Z.; Tang, J.; Zhang, W.; Quan, W.; Li, J.; Zheng, J.; Gu, Y. Ab initio study of the structures and transport properties of warm dense nitrogen. High Energy Density Phys. 2019, 31, 52–58. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, H.; Ding, M.C.; Zhao, X.G.; Wang, H.Y.; Yan, J.L. Stability line of liquid molecular nitrogen based on the SCAN meta-GGA density functional. Phys. Rev. B 2018, 98, 184205. [Google Scholar] [CrossRef]
- Cormier, M.M.E.; Bonev, S.A. Polymerization of sodium-doped liquid nitrogen under pressure. Phys. Rev. B 2017, 96, 184104. [Google Scholar] [CrossRef]
- Tomasino, D.; Kim, M.; Smith, J.; Yoo, C.-S. Pressure-Induced Symmetry-Lowering Transition in Dense Nitrogen to Layered Polymeric Nitrogen (LP-N) with Colossal Raman Intensity. Phys. Rev. Lett. 2014, 113, 205502. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Zheng, F.; Zhang, P. Quantum molecular dynamics simulations for the nonmetal-metal transition in fluid nitrogen oxide. J. Appl. Phys. 2012, 112, 033501. [Google Scholar] [CrossRef]
- Boates, B.; Bonev, S. First-Order Liquid-Liquid Phase Transition in Compressed Nitrogen. Phys. Rev. Lett. 2009, 102, 015701. [Google Scholar] [CrossRef]
- Mazevet, S.; Blottiau, P.; Kress, J.; Collins, L. Quantum molecular dynamics simulations of shocked nitrogen oxide. Phys. Rev. B 2004, 69, 224207. [Google Scholar] [CrossRef]
- Naden Robinson, V.; Wang, Y.; Ma, Y.; Hermann, A. Stabilization of ammonia-rich hydrate inside icy planets. Proc. Natl. Acad. Sci. USA 2017, 114, 9003–9008. [Google Scholar] [CrossRef]
- Liu, C.; Mafety, A.; Queyroux, J.A.; Wilson, C.W.; Zhang, H.; Beneut, K.; Le Marchand, G.; Baptiste, B.; Dumas, P.; Garbarino, G.; et al. Topologically frustrated ionisation in a water-ammonia ice mixture. Nat. Commun. 2017, 8, 1065. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, X.; Zheng, Z.; Huang, Y.; Zhao, J. Ionic and superionic phases in ammonia dihydrate NH3·2H2O under high pressure. Phys. Rev. B 2017, 95, 144104. [Google Scholar] [CrossRef]
- Muñoz Caro, G.M.; Dartois, E.; Boduch, P.; Rothard, H.; Domaracka, A.; Jiménez-Escobar, A. Comparison of UV and high-energy ion irradiation of methanol:ammonia ice. Astron. Astrophys. 2014, 566, A93. [Google Scholar] [CrossRef]
- Ninet, S.; Datchi, F.; Saitta, A.M. Proton disorder and superionicity in hot dense ammonia ice. Phys. Rev. Lett. 2012, 108, 165702. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, P.; Yan, J. Quantum molecular dynamics simulations for the nonmetal-metal transition in shocked methane. Phys. Rev. B 2011, 84, 184204. [Google Scholar] [CrossRef]
- Schott, G.L.; Shaw, M.S.; Johnson, J.D. Shocked states from initially liquid oxygen–nitrogen systems. J. Chem. Phys. 1985, 82, 4264–4275. [Google Scholar] [CrossRef]
- Ziurys, L.M.; McGonagle, D.; Minh, Y.; Irvine, W.M. Nitric Oxide in Star-forming Regions: Further Evidence for Interstellar N−O Bonds. Astrophys. J. 1991, 373, 535. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Peng, H.; Yang, Z.-H.; Perdew, J.P.; Sun, J. Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation. Phys. Rev. X 2016, 6, 041005. [Google Scholar] [CrossRef]
- Sun, J.; Remsing, R.C.; Zhang, Y.; Sun, Z.; Ruzsinszky, A.; Peng, H.; Yang, Z.; Paul, A.; Waghmare, U.; Wu, X.; et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat. Chem. 2016, 8, 831–836. [Google Scholar] [CrossRef]
- Blanchet, A.; Torrent, M.; Clérouin, J. Requirements for very high temperature Kohn–Sham DFT simulations and how to bypass them. Phys. Plasmas 2020, 27, 122706. [Google Scholar] [CrossRef]
- Kubo, R. Statistical-mechanical theory of irreversible processes: I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 1957, 12, 570–586. [Google Scholar] [CrossRef]
- Greenwood, D.A. The Boltzmann equation in the theory of electrical conduction in metals. Proc. Phys. Soc. 1958, 71, 585. [Google Scholar] [CrossRef]
- Pozzo, M.; Desjarlais, M.P.; Alfè, D. Electrical and thermal conductivity of liquid sodium from first-principles calculations. Phys. Rev. B 2011, 84, 054203. [Google Scholar] [CrossRef]
- Mazevet, S.; Torrent, M.; Recoules, V.; Jollet, F. Calculations of the transport properties within the PAW formalism. High Energy Density Phys. 2010, 6, 84–88. [Google Scholar] [CrossRef]
- Gonze, X.; Amadon, B.; Antonius, G.; Arnardi, F.; Baguet, L.; Beuken, J.-M.; Bieder, J.; Bottin, F.; Bouchet, J.; Bousquet, E.; et al. The Abinitproject: Impact, environment and recent developments. Comput. Phys. Commun. 2020, 248, 107042. [Google Scholar] [CrossRef]
- Gonze, X.; Amadon, B.; Anglade, P.M.; Beuken, J.M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Côté, M. ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 2009, 180, 2582–2615. [Google Scholar] [CrossRef]
- Gonze, X. A brief introduction to the ABINIT software package. Z. Krist.-Cryst. Mater. 2005, 220, 558–562. [Google Scholar] [CrossRef]
- Gonze, X.; Beuken, J.M.; Caracas, R.; Detraux, F.; Fuchs, M.; Rignanese, G.M.; Sindic, L.; Verstraete, M.; Zerah, G.; Jollet, F. First-principles computation of material properties: The ABINIT software project. Comput. Mater. Sci. 2002, 25, 478–492. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Piotrowski, M.J.; Piquini, P.; Da Silva, J.L.F. Density functional theory investigation of3d,4d, and5d13-atom metal clusters. Phys. Rev. B 2010, 81, 155446. [Google Scholar] [CrossRef]
- Sun, H.; Kang, D.; Dai, J.; Zeng, J.; Yuan, J. Quantum molecular dynamics study on the structures and dc conductivity of warm dense silane. Phys. Rev. E 2014, 89, 022128. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Hou, Y.; Yuan, J. Influence of ordered structures on electrical conductivity and XANES from warm to hot dense matter. High Energy Density Phys. 2011, 7, 84–90. [Google Scholar] [CrossRef]
- Lan, Y.-S.; Wang, Z.-Q.; Liu, L.; Li, G.-J.; Sun, H.-Y.; Fu, Z.-J.; Gu, Y.-J.; Yang, G.; Li, L.-N.; Li, Z.-G.; et al. First-order liquid-liquid phase transition in nitrogen−oxygen mixtures. Phys. Rev. B 2021, 103, 144105. [Google Scholar] [CrossRef]
- Deng, J.; Stixrude, L. Thermal Conductivity of Silicate Liquid Determined by Machine Learning Potentials. Geophys. Res. Lett. 2021, 48, e2021GL093806. [Google Scholar] [CrossRef]
- Holst, B.; French, M.; Redmer, R. Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen. Phys. Rev. B 2011, 83, 235120. [Google Scholar] [CrossRef]
Density | TPBE | PPBE | TSCAN−rVV10 | PSCAN−rVV10 | TZhang | PZhang | TMazevet | PMazevet |
---|---|---|---|---|---|---|---|---|
1.92 | 1203 | 7.4 | 3720 | 13.2 | 3194 | 12.1 | ||
2.38 | 3319 | 27.6 | 2003 | 15.0 | 5267 | 29.4 | 4979 | 29.3 |
2.60 | 3945 | 35.2 | 3286 | 27.1 | 5947 | 38.0 | 6000 | 37.9 |
2.85 | 5168 | 48.8 | 5222 | 44.7 | 7437 | 49.6 | 6890 | 52.0 |
3.20 | 7803 | 74.6 | 7853 | 70.4 | 10,794 | 79.6 | 10,452 | 83.4 |
3.30 | 8922 | 84.4 | 8828 | 79.2 | 16,903 | 102.1 | ||
3.35 | 9723 | 91.0 | 22,451 | 112.4 | ||||
3.40 | 10,741 | 98.9 | 10,288 | 90.9 | 27,685 | 138.3 | ||
3.45 | 12,004 | 108.3 | 30,000 | 160.0 | ||||
3.50 | 13,445 | 118.8 | 13,047 | 111.4 | 43,070 | 204.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Z.; Zhang, X.; Wang, R.; Sun, H.; Lan, Y.; Xia, J.; Li, Z.; Song, J. Ab Initio Study of Structure and Transport Properties of Warm Dense Nitric Oxide. Inorganics 2022, 10, 120. https://doi.org/10.3390/inorganics10080120
Fu Z, Zhang X, Wang R, Sun H, Lan Y, Xia J, Li Z, Song J. Ab Initio Study of Structure and Transport Properties of Warm Dense Nitric Oxide. Inorganics. 2022; 10(8):120. https://doi.org/10.3390/inorganics10080120
Chicago/Turabian StyleFu, Zhijian, Xianming Zhang, Rui Wang, Huayang Sun, Yangshun Lan, Jihong Xia, Zhiguo Li, and Jing Song. 2022. "Ab Initio Study of Structure and Transport Properties of Warm Dense Nitric Oxide" Inorganics 10, no. 8: 120. https://doi.org/10.3390/inorganics10080120
APA StyleFu, Z., Zhang, X., Wang, R., Sun, H., Lan, Y., Xia, J., Li, Z., & Song, J. (2022). Ab Initio Study of Structure and Transport Properties of Warm Dense Nitric Oxide. Inorganics, 10(8), 120. https://doi.org/10.3390/inorganics10080120