Changes in Structural, Morphological and Optical Features of Differently Synthetized C3N4-ZnO Heterostructures: An Experimental Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization of Supramolecular Precursors
2.2. Characterization of Bare C3N4
2.3. Characterization of C3N4-ZnO Heterojunction Synthetized by Prepared Supramolecular Complexes
2.4. Characterization of C3N4-ZnO Heterojunction Synthetized by Deposition Method
2.5. Characterization of C3N4-ZnO Heterojunction Synthetized by Ultrasonic/Mechanical Method
3. Materials and Methods
3.1. Sample Preparation
3.1.1. Bare C3N4
3.1.2. Bare ZnO
3.1.3. C3N4–ZnO Heterojunctions
3.1.4. Co-synthesis from Supramolecular Adduct
3.1.5. Deposition Synthesis
3.1.6. Ultrasonic/Mechanical Mixture
3.2. Sample Characterization
4. Conclusions
- ✓
- The production of a supramolecular precursor realized by the dispersion of melamine and cyanuric acid in water or ethanol, subsequently mixed with zinc precursors and thermally calcined. In this case, we demonstrate that the prepared supramolecular complexes show the expected molecular structures. The addition of a further hydrothermal step after the thermal treatment in air was decisive in obtaining a mixed material free from impurities.
- ✓
- Direct growth by means of melamine thermal condensation of C3N4 on hydrothermally pre-formed ZnO nanoparticles.
- ✓
- The ultrasonic/mechanical mixing of both pre-formed ZnO (from hydrothermal synthesis) and C3N4 (from melamine-only condensation) nanopowders.
- ✓
- A significant trend can be extrapolated from this experimental approach involving the different intimate contacts between the two phases, strictly connected to the particular preparation method adopted: it appears that the heterojunction prepared starting from the supramolecular complex shows a tighter association between the two phases, resulting in much higher visible light harvesting (connected to the appearance of adsorption bands in the visible region); on the other hand, lower crystallinity is observed.
- ✓
- An intermediate situation is represented by the material obtained via the deposition method, where improved crystallinity, especially regarding the nitride phase, is accompanied by less optical activity at visible frequencies.
- ✓
- Finally, solid-state mixing supported by ultrasound irradiation provided crystalline materials with a completely modified morphology compared to the starting nanostructures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baly, E.C.C.; Heilbron, I.M.; Barker, W.F. CX.—Photocatalysis. Part I. The Synthesis of Formaldehyde and Carbohydrates from Carbon Dioxide and Water. J. Chem. Soc. Faraday Trans. 1921, 119, 1025–1035. [Google Scholar] [CrossRef]
- Hernandez-Ramirez, A.; Medina-Ramirez, I. Photocatalytic Semiconductors; Springer International Publisher: Cham, Switzerland, 2016. [Google Scholar]
- Coronado, J.M.; Fresno, F.; Hernàndez-Alonso, M.D.; Portela, R. Design of Advanced Photocatalytic Materials for Energy and Environmental Applications; Springer: London, UK, 2013. [Google Scholar]
- Ollis, D.F.; Pelizzetti, E.; Serpone, N. Destruction of Water Cntaminants. Environ. Sci. Technol. 1991, 25, 1522–1529. [Google Scholar] [CrossRef]
- Hoffman, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Maeda, K.; Domen, K. Photocatalytic Water Splitting: Recent Progress and Future Challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661. [Google Scholar] [CrossRef]
- Domen, K.; Kondo, J.N.; Michikazu, H.; Tsuyoshi, T. Photo- and Mechano-Catalytic Overall Water Splitting Reactions to Form Hydrogen and Oxygen on Heterogeneous Catalysts. Bull. Chem. Soc. Jpn. 2000, 73, 1307–1331. [Google Scholar] [CrossRef]
- Chang, Z.; Wang, T.; Gong, J. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196. [Google Scholar] [CrossRef]
- Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature 1979, 277, 637–638. [Google Scholar] [CrossRef]
- Jerez, S.; Lopez-Romero, J.M.; Turco, M.; Jimenez-Guerrero, P.; Vautard, R.; Montavez, J.P. Impact of Evolving Greenhouse Gas Forcing on the Warming Signal in Regional Climate Model Experiments. Nat. Commun. 2018, 9, 1304. [Google Scholar] [CrossRef]
- Figures, C.; Schellnhuber, H.J.; Whiteman, G.; Rockström, J.; Hobley, A.; Rahmstorf, S. Three Years to Safeguard our Climate. Nature 2017, 546, 593–595. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, S.; Low, J.; Xiao, W. Enhanced Photocatalytic Performance of Direct Z-Scheme g-C3N4-TiO2 Photocatalysts for the Decomposition of Formaldehyde in Air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zhang, X.; Wang, C.; Xu, J.; Du, X.; Li, L. Ti3+ Defect mediated g-C3N4/TiO2 Z-Scheme System for Enhanced Photocatalytic Redox Performance. Appl. Surf. Sci. 2018, 448, 288–296. [Google Scholar] [CrossRef]
- Cerrato, E.; Paganini, M.C. Mechanism of Visible Photon Absorption: Unveiling of the C3N4–ZnO Photoactive Interface by means of EPR Spectroscopy. Mater. Adv. 2020, 1, 2357. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, M.; Zhu, Y. Preparation of Visible Light-driven g-C3N4@ZnO Hybrid Photocatalyst via Mechanochemistry. Phys. Chem. Chem. Phys. 2014, 16, 17627–17633. [Google Scholar] [CrossRef]
- Sun, J.-X.; Yuan, J.-P.; Qia, L.-G.; Jiang, X.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. Fabrication of Composite Photocatalyst g-C3N4–ZnO and Enhancement of Photocatalytic Activity under Visible Light. Dalton Trans. 2012, 41, 6756–6763. [Google Scholar] [CrossRef] [PubMed]
- Huang, l.; Xu, H.; Li, Y.; Li, H.; Cheng, X.; Xia, J.; Xu, Y.; Cai, G. Visible-Light-induced WO3/g-C3N4 Composites with Enhanced Photocatalytic Activity. Dalton Trans. 2013, 42, 8606–8616. [Google Scholar] [CrossRef] [PubMed]
- Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. J. Am. Chem. Soc. 2013, 135, 7118–7121. [Google Scholar] [CrossRef] [PubMed]
- Shalom, M.; Guttentag, M.; Fettkenhauer, C.; Inal, S.; Neher, D.; Llobet, A.; Antonietti, M. In Situ Formation of Heterojunctions in Modified Graphitic Carbon Nitride: Synthesis and Noble Metal Free Photocatalysis. Chem. Mater. 2014, 26, 5812–5818. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Zhang, Y.; Fang, J.; Chen, W.; Yuan, S.; Zhou, Y. Facile Synthesis of Self-Assembled g-C3N4 with Abundant Nitrogen Defects for Photocatalytic Hydrogen Evolution. ACS Sustain. Chem. Eng. 2018, 6, 10200–10210. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Y.; Zhou, Y.; Wang, Y.; Qiu, K.; Zhang, C.; Fang, J.; Sheng, X. Facile One-sSep Synthesis of Hollow Mesoporous g-C3N4 Spheres with Ultrathin Nanosheets for Photoredox Water Splitting. Carbon 2018, 126, 247–256. [Google Scholar] [CrossRef]
- Jun, Y.-S.; Lee, E.Z.; Wang, X.; Hong, W.H.; Stucky, G.D.; Thomas, A. From Melamine-Cyanuric Acid Supramolecular Aggregates to Carbon Nitride Hollow Spheres. Adv. Funct. Mater. 2013, 23, 3661–3667. [Google Scholar] [CrossRef]
- Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chemical Synthesis of Mesoporous Carbon Nitrides Using Hard Templates and Their Use as a Metal-Free Catalyst for Friedel–Crafts Reaction of Benzene. Angew. Chem. Int. Ed. Engl. 2006, 45, 4467–4471. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, T.; Wang, Z.; Dawsona, G.; Chen, W.M. Simple Pyrolysis of Urea into Graphitic Carbon Nitride with Recyclable Adsorption and Photocatalytic Activity. J. Mater. Chem. 2011, 21, 14398. [Google Scholar] [CrossRef]
- Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J.-O.; Schlogl, R.; Carlsson, J.M. Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and their Use as Metal-Free Catalysts. J. Mater. Chem. 2008, 18, 4893–4908. [Google Scholar] [CrossRef]
- Inagaki, M.; Tsumura, T.; Kinumoto, T.; Toyoda, M. Graphitic Carbon Nitrides (g-C3N4) with Comparative Discussion to Carbon Materials. Carbon 2019, 141, 580–607. [Google Scholar] [CrossRef]
- Alves, I.; Demazeau, G.; Tanguy, B.; Weill, F. On a New Model of the Graphitic Form of C3N4. Solid State Commun. 2001, 109, 697–701. [Google Scholar] [CrossRef]
- Kumar, S.G.; Karthikeyan, S.; Lee, A.F. g-C3N4-based Nanomaterials for Visible Light-Driven Photocatalysis. Catalysts 2018, 8, 74. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Xiao, J.; Han, Q.; Cao, H.; Rabeah, J.; Yang, J.; Guo, Z.; Zhou, L.; Xie, Y.; Bruckner, A. Number of Reactive Charge Carriers—A Hidden Linker between Band Structure and Catalytic Performance in Photocatalysts. ACS Catal. 2019, 9, 8852–8861. [Google Scholar] [CrossRef]
- Huda, M.N.; Turner, J.A. Morphology-dependent optical absorption and conduction properties of photoelectrochemical photocatalysts for H2 production: A case study. J. Appl. Phys. 2010, 107, 123703. [Google Scholar] [CrossRef]
- Wróbel, J.; Piechota, J. On the structural stability of ZnO phases. Solid State Commun. 2008, 146, 324–329. [Google Scholar] [CrossRef]
- Fanetti, S.; Citroni, M.; Dziubek, K.; Nobrega, M.M.; Bini, R. The Role of H-bond in the High-Pressure Chemistry of Model Molecules. J. Phys. Condens. Matter. 2018, 30, 094001. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Xu, D.; Peng, T. Enhanced Photocatalytic Activity of g-C3N4 for Selective CO2 Reduction to CH3OH via Facile Coupling of ZnO: A Direct Z-scheme Mechanism. J. Mater. Chem. A 2015, 3, 19936–19947. [Google Scholar] [CrossRef]
- Chen, Q.; Hou, H.; Zhang, D.; Hu, S.; Min, T.; Liu, B.; Yang, C.; Pu, W.; Hu, J.; Yang, J. Enhanced Visible-Light Driven Photocatalytic Activity of Hybrid ZnO/g-C3N4 by High Performance Ball Milling. J. Photochem. Photobiol. A Chem. 2018, 350, 1–9. [Google Scholar] [CrossRef]
- Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J. Sulfur-doped g-C3N4 with Enhanced Photocatalytic CO2-Reduction Performance. Appl. Catal. B Environ. 2015, 176, 44–52. [Google Scholar] [CrossRef]
- Zhai, J.; Wang, T.; Wang, C.; Liu, D. UV-Light-Assisted Ethanol Sensing Characteristics of g-C3N4/ZnO Composites at Room Temperature. Appl. Surf. Sci. 2018, 441, 317–3323. [Google Scholar] [CrossRef]
- Le, S.; Jiang, T.; Li, Y.; Zhao, Q.; Li, Y.; Fang, W.; Gong, M. Highly Efficient Visible-Light-Driven Mesoporous Graphitic Carbon Nitride/ZnO Nanocomposite Photocatalysts. Appl. Catal. B Environ. 2017, 200, 601–610. [Google Scholar] [CrossRef]
- Cao, Q.; Li, Q.; Pi, Z.; Zhang, J.; Sun, L.W.; Xu, J.; Cao, Y.; Cheng, J.; Bian, Y. Metal-Organic-Framework-Derived Ball-Flower-like Porous Co3O4/Fe2O3 Heterostructure with Enhanced Visible-Light-Driven Photocatalytic Activity. Nanomaterials 2022, 12, 904. [Google Scholar] [CrossRef]
- Cao, Q.; Hao, S.; Wu, Y.; Pei, K.; You, W.; Che, R. Interfacial Charge Redistribution in Interconnected Network of Ni2P–Co2P Boosting Electrocatalytic Hydrogen Evolution in both Acidic and Alkaline Conditions. Chem. Eng. J. 2021, 424, 130444. [Google Scholar] [CrossRef]
- Zhu, L.-Y.; Yuan, K.; Yang, J.-G.; Ma, H.-P.; Wang, T.; Ji, X.-M.; Feng, J.-J.; Devi, A.; Lu, H.-L. Fabrication of Heterostructured p-CuO/n-SnO2 Core-Shell Nanowires for Enhanced Sensitive and Selective Formaldehyde Detection. Sens. Actuators B Chem. 2019, 290, 233–241. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced Photoresponsive Ultrathin Graphitic-Phase C3N4 Nanosheets for Bioimaging. J. Am. Chem Soc. 2013, 135, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vaiìjtai, R.; Wang, X.; Ajayan, P.M. Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light. Adv. Mater. 2013, 25, 2452–2456. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Yu, J.; Cao, Y.; Delaunay, J.-J.; Che, R. Unusual Effects of Vacuum Annealing on Large-Area Ag3PO4 Microcrystalline Film Photoanode Boosting Cocatalyst- and Scavenger-free Water Splitting. J. Mater. 2021, 7, 929–939. [Google Scholar] [CrossRef]
- Nocchetti, M.; Pica, M.; Ridolfi, B.; Donnadio, A.; Boccalon, E.; Zampini, G.; Pietrella, D.; Casciola, M. AgCl-ZnAl Layered Double Hydroxides as Catalysts with Enhanced Photodegradation and Antibacterial Activities. Inorganics 2019, 7, 120. [Google Scholar] [CrossRef]
- Cerrato, E.; Gionco, C.; Paganini, M.C.; Giamello, E.; Albanese, E.; Pacchioni, G. Origin of Visible Light Photoactivity of the CeO2/ZnO Heterojunction. ACS Appl. Energy Mater. 2018, 1, 4247–4260. [Google Scholar] [CrossRef]
- Cerrato, E.; Zickler, G.A.; Paganini, M.C. The Role of Yb Doped ZnO in the Charge Transfer Process and Stabilization. J. Alloys Compd. 2019, 816, 152555. [Google Scholar] [CrossRef]
- Paganini, M.C.; Cerrato, E. Photoactive Systems based on Semiconducting Metal Oxides. In Material Science in Photocatalysis; Garcıa-Lopez, E.I., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 1, pp. 221–234. [Google Scholar]
- Tauc, J. The Optical Properties of Solids; Academic Press: New York, NY, USA, 1966. [Google Scholar]
Sample | Abbreviation | Synthetic procedure | Precursors | Supramol. Complexes | Hydroth. Step | Calcin. Step | Energy Gap (eV) | Surf. Area BET m2/g |
---|---|---|---|---|---|---|---|---|
ZnO | ZnO_H | Hydrothermal | Zn(NO3)2 | 175 °C for 16 h | 3.27 | <10 | ||
C3N4 | C3N4 –M | Thermal condensation | M | 550 °C for 4 h | 2.87 | ∼11 | ||
C3N4 | C3N4 - CME | Thermal polycondensation | M, C, EtOH (M-C molar ratio 1:1) | X | 550 °C for 4 h | 3.01 | ∼32 | |
C3N4 | C3N4 - CMW | Thermal polycondensation | M, C, H2O (M-C molar ratio 1:1) | X | 550 °C for 4 h | 3.04 | ∼33 | |
ZnO-C3N4 | ZnO-CME | Thermal polycondensation | Zn(NO3)2, M, C, EtOH (M-C molar ratio 1:1) | X | 550 °C for 4 h | 3.20 | <10 | |
ZnO-C3N4 | ZnO-CMW | Thermal polycondensation | Zn(NO3)2, M, C, H2O (M-C molar ratio 1:1) | X | 550 °C for 4 h | 3.19 | <10 | |
ZnO-C3N4 | ZnO-CMW_H | Thermal polycondensation + Hydrothermal | Zn(NO3)2, M, C, H2O (M-C molar ratio 1:1) | X | 175 °C for 16 h (after first calcination step) | 550 °C for 4 h | <10 | |
ZnO-C3N4 | ZnO-M | Thermal condensation | Zn(NO3)2, M, EtOH | 550 °C for 4 h | 3.19 | ∼12 | ||
ZnO_H-C3N4 | DEP 31 | Deposition | ZnO_H, M, H2O (ZnO_H-C molar ratio 3:1) | 550 °C for 4 h | 3.21 | <10 | ||
ZnO_H-C3N4 | DEP 21 | Deposition | ZnO_H, M, H2O (ZnO_H-M molar ratio 2:1) | 550 °C for 4 h | 3.21 | <10 | ||
ZnO_H-C3N4 | DEP 21_H | Deposition | ZnO_H, M, H2O (ZnO_H-M molar ratio 2:1) | 175 °C for 16 h (after first calcination step) | 550 °C for 4 h | 3.21 | <10 | |
ZnO_H-C3N4 | DEP 11 | Deposition | ZnO_H, M, H2O (ZnO_H-M molar ratio 1:1) | 550 °C for 4 h | 3.21 | <10 | ||
ZnO_H-C3N4 | DEP 11_H | Deposition | ZnO_H, M, H2O (ZnO_H-M molar ratio 1:1) | 175 °C for 16 h (after first calcination step) | 550 °C for 4 h | 3.21 | <10 | |
ZnO_H - C3N4 | US 31 | Ultrasonic/mechanical mixture | ZnO-H, C3N4–M, H2O (ZnO_H-C3N4–M molar ratio 3:1) | 3.20 | <10 | |||
ZnO_H-C3N4 | US 21 | Ultrasonic/mechanical mixture | ZnO-H, C3N4–M, H2O (ZnO_H- C3N4–M molar ratio 2:1) | 3.20 | <10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Actis, A.; Sacchi, F.; Takidis, C.; Paganini, M.C.; Cerrato, E. Changes in Structural, Morphological and Optical Features of Differently Synthetized C3N4-ZnO Heterostructures: An Experimental Approach. Inorganics 2022, 10, 119. https://doi.org/10.3390/inorganics10080119
Actis A, Sacchi F, Takidis C, Paganini MC, Cerrato E. Changes in Structural, Morphological and Optical Features of Differently Synthetized C3N4-ZnO Heterostructures: An Experimental Approach. Inorganics. 2022; 10(8):119. https://doi.org/10.3390/inorganics10080119
Chicago/Turabian StyleActis, Arianna, Francesca Sacchi, Christos Takidis, Maria Cristina Paganini, and Erik Cerrato. 2022. "Changes in Structural, Morphological and Optical Features of Differently Synthetized C3N4-ZnO Heterostructures: An Experimental Approach" Inorganics 10, no. 8: 119. https://doi.org/10.3390/inorganics10080119
APA StyleActis, A., Sacchi, F., Takidis, C., Paganini, M. C., & Cerrato, E. (2022). Changes in Structural, Morphological and Optical Features of Differently Synthetized C3N4-ZnO Heterostructures: An Experimental Approach. Inorganics, 10(8), 119. https://doi.org/10.3390/inorganics10080119