Application of Biobased Substances in the Synthesis of Nanostructured Magnetic Core-Shell Materials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Syntehsis of IONPs Using BBS
2.2. MBBS@mSiO2 and MBBS@TiO2 Nanoparticles
3. Materials and Methods
3.1. Reagents
3.2. Syntehsis of IONPs and Core-Shell Magnetic Nanoparticles
3.3. Application of Core-Shell Magnetic Nanoparticles
3.4. Characterization Tecnhiques
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nisticò, R.; Cesano, F.; Garello, F. Magnetic Materials and Systems: Domain Structure Visualization and Other Characterization Techniques for the Application in the Materials Science and Biomedicine. Inorganics 2020, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Pathak, S.; Jain, K.; Kumar, P.; Wang, X.; Pant, R.P. Improved Thermal Performance of Annular Fin-Shell Tube Storage System Using Magnetic Fluid. Appl. Energy 2019, 239, 1524–1535. [Google Scholar] [CrossRef]
- Pathak, S.; Jain, K.; Kumar, V.; Pant, R.P. Magnetic Fluid Based High Precision Temperature Sensor. IEEE Sens. J. 2017, 17, 2670–2675. [Google Scholar] [CrossRef]
- Noh, B.-I.; Yang, S.C. Ferromagnetic, Ferroelectric, and Magnetoelectric Properties in Individual Nanotube-Based Magnetoelectric Films of CoFe2O4/BaTiO3 Using Electrically Resistive Core-Shell Magnetostrictive Nanoparticles. J. Alloys Compd. 2022, 891, 161861. [Google Scholar] [CrossRef]
- Peralta, M.E.; Ocampo, S.; Funes, I.G.; Medina, F.O.; Parolo, M.E.; Carlos, L. Nanomaterials with Tailored Magnetic Properties as Adsorbents of Organic Pollutants from Wastewaters. Inorganics 2020, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Nisticò, R. Magnetic Materials and Water Treatments for a Sustainable Future. Res. Chem. Intermed. 2017, 43, 6911–6949. [Google Scholar] [CrossRef]
- Carlos, L.; Garcia Einschlag, F.S.; González, M.C.; Mártire, D.O. Applications of Magnetite Nanoparticles for Heavy Metal Removal from Wastewater. In Waste Water—Treatment Technologies and Recent Analytical Developments; IntechOpen: London, UK, 2013; pp. 1–16. [Google Scholar] [CrossRef] [Green Version]
- Fotukian, S.M.; Barati, A.; Soleymani, M.; Alizadeh, A.M. Solvothermal Synthesis of CuFe2O4 and Fe3O4 Nanoparticles with High Heating Efficiency for Magnetic Hyperthermia Application. J. Alloys Compd. 2020, 816, 152548. [Google Scholar] [CrossRef]
- Liu, H.; Ji, S.; Zheng, Y.; Li, M.; Yang, H. Modified Solvothermal Synthesis of Magnetic Microspheres with Multifunctional Surfactant Cetyltrimethyl Ammonium Bromide and Directly Coated Mesoporous Shell. Powder Technol. 2013, 246, 520–529. [Google Scholar] [CrossRef]
- Cheng, C.; Wen, Y.; Xu, X.; Gu, H. Tunable Synthesis of Carboxyl-Functionalized Magnetite Nanocrystal Clusters with Uniform Size. J. Mater. Chem. 2009, 19, 8782. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Z.; Deng, Y.; Zou, Y.; Li, C.; Guo, X.; Xiong, L.; Gao, Y.; Li, F.; Zhao, D. Highly Water-Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups. Angew. Chemie Int. Ed. 2009, 48, 5875–5879. [Google Scholar] [CrossRef]
- Wang, W.; Tang, B.; Ju, B.; Zhang, S. Size-Controlled Synthesis of Water-Dispersible Superparamagnetic Fe3O4 Nanoclusters and Their Magnetic Responsiveness. RSC Adv. 2015, 5, 75292–75299. [Google Scholar] [CrossRef]
- Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse Magnetic Single-Crystal Ferrite Microspheres. Angew. Chem. 2005, 117, 2842–2845. [Google Scholar] [CrossRef]
- Ge, J.; Hu, Y.; Biasini, M.; Beyermann, W.P.; Yin, Y. Superparamagnetic Magnetite Colloidal Nanocrystal Clusters. Angew. Chemie Int. Ed. 2007, 46, 4342–4345. [Google Scholar] [CrossRef]
- Liang, J.; Ma, H.; Luo, W.; Wang, S. Synthesis of Magnetite Submicrospheres with Tunable Size and Superparamagnetism by a Facile Polyol Process. Mater. Chem. Phys. 2013, 139, 383–388. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, T.; Li, Y.; Zhao, Y.; Ye, Y.; Wu, W.; Tong, G. Effects of Crystal Size and Sphere Diameter on Static Magnetic and Electromagnetic Properties of Monodisperse Fe3O4 Microspheres. Mater. Chem. Phys. 2016, 173, 152–160. [Google Scholar] [CrossRef]
- Li, S.; Zhang, T.; Tang, R.; Qiu, H.; Wang, C.; Zhou, Z. Solvothermal Synthesis and Characterization of Monodisperse Superparamagnetic Iron Oxide Nanoparticles. J. Magn. Magn. Mater. 2015, 379, 226–231. [Google Scholar] [CrossRef]
- Montoneri, E.; Prevot, A.B.; Avetta, P.; Arques, A.; Carlos, L.; Magnacca, G.; Laurenti, E.; Tabasso, S. CHAPTER 4:Food Wastes Conversion to Products for Use in Chemical and Environmental Technology, Material Science and Agriculture. In RSC Green Chemistry; Royal Society of Chemistry: London, UK, 2013; pp. 64–109. ISBN 9781849736152. [Google Scholar]
- Quagliotto, P.; Montoneri, E.; Tambone, F.; Adani, F.; Gobetto, R.; Viscardi, G. Chemicals from Wastes: Compost-Derived Humic Acid-like Matter as Surfactant. Environ. Sci. Technol. 2006, 40, 1686–1692. [Google Scholar] [CrossRef]
- Boffa, V.; Perrone, D.G.; Montoneri, E.; Magnacca, G.; Bertinetti, L.; Garlasco, L.; Mendichi, R. A Waste-Derived Biosurfactant for the Preparation of Templated Silica Powders. ChemSusChem 2010, 3, 445–452. [Google Scholar] [CrossRef]
- Nisticò, R.; Carlos, L. High Yield of Nano Zero-Valent Iron (NZVI)from Carbothermal Synthesis Using Lignin-Derived Substances from Municipal Biowaste. J. Anal. Appl. Pyrolysis 2019, 140, 239–244. [Google Scholar] [CrossRef]
- Nisticò, R.; Barrasso, M.; Carrillo Le Roux, G.A.; Seckler, M.M.; Sousa, W.; Malandrino, M.; Magnacca, G. Biopolymers from Composted Biowaste as Stabilizers for the Synthesis of Spherical and Homogeneously Sized Silver Nanoparticles for Textile Applications on Natural Fibers. ChemPhysChem 2015, 16, 3902–3909. [Google Scholar] [CrossRef] [PubMed]
- Magnacca, G.; Allera, A.; Montoneri, E.; Celi, L.; Benito, D.E.; Gagliardi, L.G.; Gonzalez, M.C.; Mártire, D.O.; Carlos, L. Novel Magnetite Nanoparticles Coated with Waste-Sourced Biobased Substances as Sustainable and Renewable Adsorbing Materials. ACS Sustain. Chem. Eng. 2014, 2, 1518–1524. [Google Scholar] [CrossRef] [Green Version]
- Nisticò, R.; Cesano, F.; Franzoso, F.; Magnacca, G.; Scarano, D.; Funes, I.G.; Carlos, L.; Parolo, M.E. From Biowaste to Magnet-Responsive Materials for Water Remediation from Polycyclic Aromatic Hydrocarbons. Chemosphere 2018, 202, 686–693. [Google Scholar] [CrossRef]
- Nisticò, R.; Celi, L.R.; Bianco Prevot, A.; Carlos, L.; Magnacca, G.; Zanzo, E.; Martin, M. Sustainable Magnet-Responsive Nanomaterials for the Removal of Arsenic from Contaminated Water. J. Hazard. Mater. 2018, 342, 260–269. [Google Scholar] [CrossRef]
- Franzoso, F.; Nisticò, R.; Cesano, F.; Corazzari, I.; Turci, F.; Scarano, D.; Bianco Prevot, A.; Magnacca, G.; Carlos, L.; Mártire, D.O. Biowaste-Derived Substances as a Tool for Obtaining Magnet-Sensitive Materials for Environmental Applications in Wastewater Treatments. Chem. Eng. J. 2017, 310, 307–316. [Google Scholar] [CrossRef]
- Aparicio, F.; Mizrahi, M.; Ramallo-López, J.M.; Laurenti, E.; Magnacca, G.; Carlos, L.; Mártire, D.O. Novel Bimetallic Magnetic Nanocomposites Obtained from Waste-Sourced Bio-Based Substances as Sustainable Photocatalysts. Mater. Res. Bull. 2022, 152, 111846. [Google Scholar] [CrossRef]
- Ayala, L.I.M.; Aparicio, F.; Boffa, V.; Magnacca, G.; Carlos, L.; Bosio, G.N.; Mártire, D.O. Removal of As(III) via Adsorption and Photocatalytic Oxidation with Magnetic Fe–Cu Nanocomposites. Photochem. Photobiol. Sci. 2022, 1, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Chen, S.; Quan, X.; Zhao, H. Photochemical Activity and Characterization of the Complex of Humic Acids with Iron(III). J. Geochem. Explor. 2009, 102, 49–55. [Google Scholar] [CrossRef]
- Yadav, R.S.; Havlica, J.; Kuřitka, I.; Kozakova, Z.; Masilko, J.; Hajdúchová, M.; Enev, V.; Wasserbauer, J. Effect of Pr3+ Substitution on Structural and Magnetic Properties of CoFe2O4 Spinel Ferrite Nanoparticles. J. Supercond. Nov. Magn. 2015, 28, 241–248. [Google Scholar] [CrossRef]
- Arun, T.; Prabakaran, K.; Udayabhaskar, R.; Mangalaraja, R.V.; Akbari-Fakhrabadi, A. Carbon Decorated Octahedral Shaped Fe3O4 and α-Fe2O3 Magnetic Hybrid Nanomaterials for next Generation Supercapacitor Applications. Appl. Surf. Sci. 2019, 485, 147–157. [Google Scholar] [CrossRef]
- Shirsath, S.E.; Kadam, R.H.; Mane, M.L.; Ghasemi, A.; Yasukawa, Y.; Liu, X.; Morisako, A. Permeability and Magnetic Interactions in Co2+ Substituted Li0.5Fe2.5O4 Alloys. J. Alloys Compd. 2013, 575, 145–151. [Google Scholar] [CrossRef]
- Vargas, J.M.; Shukla, D.K.; Meneses, C.T.; Mendoza Zélis, P.; Singh, M.; Sharma, S.K. Synthesis, Phase Composition, Mössbauer and Magnetic Characterization of Iron Oxide Nanoparticles. Phys. Chem. Chem. Phys. 2016, 18, 9561–9568. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Suh, C.Y.; Cho, S.W.; Roh, K.M.; Kwon, H.; Song, K.; Shon, I.J. A New Method for the Identification and Quantification of Magnetite-Maghemite Mixture Using Conventional X-Ray Diffraction Technique. Talanta 2012, 94, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Cuenca, J.A.; Bugler, K.; Taylor, S.; Morgan, D.; Williams, P.; Bauer, J.; Porch, A. Study of the Magnetite to Maghemite Transition Using Microwave Permittivity and Permeability Measurements. J. Phys. Condens. Matter 2016, 28, 106002. [Google Scholar] [CrossRef] [Green Version]
- Arun, T.; Prakash, K.; Kuppusamy, R.; Joseyphus, R.J. Magnetic Properties of Prussian Blue Modified Fe3O4 Nanocubes. J. Phys. Chem. Solids 2013, 74, 1761–1768. [Google Scholar] [CrossRef]
- Dutta, P.; Pal, S.; Seehra, M.S.; Shah, N.; Huffman, G.P. Size Dependence of Magnetic Parameters and Surface Disorder in Magnetite Nanoparticles. J. Appl. Phys. 2009, 105, 10–13. [Google Scholar] [CrossRef]
- Peralta, M.E.; Nisticò, R.; Franzoso, F.; Magnacca, G.; Fernandez, L.; Parolo, M.E.; León, E.G.; Carlos, L. Highly Efficient Removal of Heavy Metals from Waters by Magnetic Chitosan-Based Composite. Adsorption 2019, 25, 1337–1347. [Google Scholar] [CrossRef]
- Zhao, Q.; Xie, P.; Li, X.; Wang, Y.; Zhang, Y.; Wang, S. Magnetic Mesoporous Silica Nanoparticles Mediated Redox and PH Dual-Responsive Target Drug Delivery for Combined Magnetothermal Therapy and Chemotherapy. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129359. [Google Scholar] [CrossRef]
- Kamarudin, N.H.N.; Jalil, A.A.; Triwahyono, S.; Sazegar, M.R.; Hamdan, S.; Baba, S.; Ahmad, A. Elucidation of Acid Strength Effect on Ibuprofen Adsorption and Release by Aluminated Mesoporous Silica Nanoparticles. RSC Adv. 2015, 5, 30023–30031. [Google Scholar] [CrossRef]
- Bian, Q.; Xue, Z.; Sun, P.; Shen, K.; Wang, S.; Jia, J. Visible-Light-Triggered Supramolecular Valves Based on β-Cyclodextrin-Modified Mesoporous Silica Nanoparticles for Controlled Drug Release. RSC Adv. 2019, 9, 17179–17182. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Wang, Y.; Wei, H.; Tang, H.; Liu, X.; Lu, T.; Wang, J. Magnetic Iron Oxide Nanoparticles Coated by Hierarchically Structured Silica: A Highly Stable Nanocomposite System and Ideal Catalyst Support. J. Mater. Chem. A 2014, 2, 11202–11208. [Google Scholar] [CrossRef]
- Hou, X.; Xu, H.; Pan, L.; Tian, Y.; Zhang, X.; Ma, L.; Li, Y.; Zhao, J. Adsorption of Bovine Serum Albumin on Superparamagnetic Composite Microspheres with a Fe3O4/SiO2 Core and Mesoporous SiO2 Shell. RSC Adv. 2015, 5, 103760–103766. [Google Scholar] [CrossRef]
- Nicola, R.; Muntean, S.G.; Nistor, M.A.; Putz, A.M.; Almásy, L.; Săcărescu, L. Highly Efficient and Fast Removal of Colored Pollutants from Single and Binary Systems, Using Magnetic Mesoporous Silica. Chemosphere 2020, 261, 127737. [Google Scholar] [CrossRef]
- Nicola, R.; Costişor, O.; Muntean, S.G.; Nistor, M.A.; Putz, A.M.; Ianăşi, C.; Lazău, R.; Almásy, L.; Săcărescu, L. Mesoporous Magnetic Nanocomposites: A Promising Adsorbent for the Removal of Dyes from Aqueous Solutions. J. Porous Mater. 2020, 27, 413–428. [Google Scholar] [CrossRef]
- Jiang, Y.; Liang, W.; Wang, B.; Feng, Q.; Xia, C.; Wang, Q.; Yan, Y.; Zhao, L.; Cui, W.; Liang, H. Magnetic Mesoporous Silica Nanoparticles Modified by Phosphonate Functionalized Ionic Liquid for Selective Enrichment of Phosphopeptides. RSC Adv. 2022, 12, 26859–26865. [Google Scholar] [CrossRef]
- Gómez-Pastora, J.; Dominguez, S.; Bringas, E.; Rivero, M.J.; Ortiz, I.; Dionysiou, D.D. Review and Perspectives on the Use of Magnetic Nanophotocatalysts (MNPCs) in Water Treatment. Chem. Eng. J. 2017, 310, 407–427. [Google Scholar] [CrossRef]
- Salve, R.; Kumar, P.; Ngamcherdtrakul, W.; Gajbhiye, V.; Yantasee, W. Stimuli-Responsive Mesoporous Silica Nanoparticles: A Custom-Tailored next Generation Approach in Cargo Delivery. Mater. Sci. Eng. C 2021, 124, 112084. [Google Scholar] [CrossRef]
- Wang, D.; Yang, J.; Li, X.; Wang, J.; Zhai, H.; Lang, J.; Song, H. Effect of Thickness and Microstructure of TiO2 Shell on Photocatalytic Performance of Magnetic Separable Fe3O4/SiO2/MTiO2 Core-Shell Composites. Phys. Status Solidi Appl. Mater. Sci. 2017, 214, 1600665. [Google Scholar] [CrossRef]
- Mamba, G.; Mishra, A. Advances in Magnetically Separable Photocatalysts: Smart, Recyclable Materials for Water Pollution Mitigation. Catalysts 2016, 6, 79. [Google Scholar] [CrossRef]
- Deng, Y.; Qi, D.; Deng, C.; Zhang, X.; Zhao, D. Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. J. Am. Chem. Soc. 2008, 130, 28–29. [Google Scholar] [CrossRef]
- Peralta, M.E.; Jadhav, S.A.; Magnacca, G.; Scalarone, D.; Mártire, D.O.; Parolo, M.E.; Carlos, L. Synthesis and in Vitro Testing of Thermoresponsive Polymer-Grafted Core-Shell Magnetic Mesoporous Silica Nanoparticles for Efficient Controlled and Targeted Drug Delivery. J. Colloid Interface Sci. 2019, 544, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Meng, G.; Wu, J.; Li, D.; Liu, Z. Study on Enhanced Photocatalytic Activity of Magnetically Recoverable Fe3O4@C@TiO2 Nanocomposites with Core-Shell Nanostructure. Opt. Mater. 2015, 46, 52–58. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peralta, M.E.; Koffman-Frischknecht, A.; Moreno, M.S.; Mártire, D.O.; Carlos, L. Application of Biobased Substances in the Synthesis of Nanostructured Magnetic Core-Shell Materials. Inorganics 2023, 11, 46. https://doi.org/10.3390/inorganics11010046
Peralta ME, Koffman-Frischknecht A, Moreno MS, Mártire DO, Carlos L. Application of Biobased Substances in the Synthesis of Nanostructured Magnetic Core-Shell Materials. Inorganics. 2023; 11(1):46. https://doi.org/10.3390/inorganics11010046
Chicago/Turabian StylePeralta, Marcos E., Alejandro Koffman-Frischknecht, M. Sergio Moreno, Daniel O. Mártire, and Luciano Carlos. 2023. "Application of Biobased Substances in the Synthesis of Nanostructured Magnetic Core-Shell Materials" Inorganics 11, no. 1: 46. https://doi.org/10.3390/inorganics11010046
APA StylePeralta, M. E., Koffman-Frischknecht, A., Moreno, M. S., Mártire, D. O., & Carlos, L. (2023). Application of Biobased Substances in the Synthesis of Nanostructured Magnetic Core-Shell Materials. Inorganics, 11(1), 46. https://doi.org/10.3390/inorganics11010046