Fe,Mg-Codoped Bismuth Tantalate Pyrochlores: Crystal Structure, Thermal Stability, Optical and Electrical Properties, XPS, NEXAFS, ESR, and 57Fe Mössbauer Spectroscopy Study
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Thermal Behavior, Morphology and Crystal Structure
3.2. XPS, ESR, NEXAFS and Mössbauer Spectroscopy
3.3. Dielectric and Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murugesan, S.; Huda, M.N.; Yan, Y.; Al-Jassim, M.M.; Subramanian, V. Band-Engineered Bismuth Titanate Pyrochlores for Visible Light Photocatalysis. J. Phys. Chem. C 2010, 114, 10598–10605. [Google Scholar] [CrossRef]
- Khaw, C.C.; Tan, K.B.; Lee, C.K. High temperature dielectric properties of cubic bismuth zinc tantalate. Ceram. Intern. 2009, 35, 1473–1480. [Google Scholar] [CrossRef]
- Hiroi, Z.; Yamaura, J.-I.; Yonezawa, S.; Harima, H. Chemical trends of superconducting properties in pyrochlore oxides. Phys. C Supercond. Appl. 2007, 460–462, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Bongers, P.F.; van Meurs, E.R. Ferromagnetism in Compounds with Pyrochlore Structure. J. Appl. Phys. 1967, 38, 944–945. [Google Scholar] [CrossRef]
- Greedan, J.E. Frustrated rare earth magnetism: Spin glasses, spin liquids and spin ices in pyrochlore oxides. J. Alloys Comp. 2006, 408–412, 444–455. [Google Scholar] [CrossRef]
- Subramanian, M.A.; Aravamudan, G.; Rao, G.V.S. Oxide pyrochlores—A review. Prog. Solid State Chem. 1983, 15, 55–143. [Google Scholar] [CrossRef]
- McCauley, R.A. Structural Characteristics of Pyrochlore Formation. J. Appl. Phys. 1980, 51, 290–294. [Google Scholar] [CrossRef]
- Pandey, J.; Shrivastava, V.; Nagarajan, R. Metastable Bi2Zr2O7 with Pyrochlore-like Structure: Stabilization, Oxygen Ion Conductivity, and Catalytic Properties. Inorg. Chem. 2018, 57, 13667–13678. [Google Scholar] [CrossRef]
- Miles, G.C.; West, A.R. Pyrochlore Phases in the System ZnO-Bi2O3-Sb2O5: I. Stoichiometries and Phase Equilibria. J. Am. Ceram. Soc. 2006, 89, 1042–1046. [Google Scholar] [CrossRef]
- Matteucci, F.; Cruciani, G.; Dondi, M.; Baldi, G.; Barzanti, A. Crystal structural and optical properties of Cr-doped Y2Ti2O7 and Y2Sn2O7 pyrochlores. Acta Mater. 2007, 55, 2229–2238. [Google Scholar] [CrossRef]
- Srihari, V.; Verma, A.K.; Pandey, K.K.; Vishwanadh, B.; Panchal, V.; Garg, N.; Errandonea, D. Making Yb2Hf2O7 Defect Fluorite Uncompressible by Particle Size Reduction. J. Phys. Chem. C 2021, 125, 27354–27362. [Google Scholar] [CrossRef]
- Du, H.; Yao, X. Structural trends and dielectric properties of Bi-based pyrochlores. J. Mater. Sci. Mater. Electron. 2004, 15, 613–616. [Google Scholar]
- Tan, K.B.; Lee, C.K.; Zainal, Z.; Khaw, C.C.; Tan, Y.P.; Shaari, H. Reaction study and phase formation in Bi2O3-ZnO-Nb2O5 ternary system. Pac. J. Sci. Technol. 2008, 9, 468–479. [Google Scholar]
- Hector, A.L.; Wiggin, S.B. Synthesis and structural study of stoichiometric Bi2Ti2O7 pyrochlore. J. Solid State Chem. 2004, 177, 139–145. [Google Scholar] [CrossRef]
- Huiling, D.; Xi, Y. Synthesis and dielectric properties development of new thermal stable bismuth pyrochlores. J. Phys. Chem. Solids. 2002, 63, 2123–2128. [Google Scholar] [CrossRef]
- Du, H.; Wang, H.; Yao, X. Observations on structural evolution and dielectric properties of oxygen-deficient pyrochlores. Ceram. Int. 2004, 30, 1383–1387. [Google Scholar] [CrossRef]
- Zhou, D.; Fan, X.Q.; Jin, X.W.; He, D.W.; Chen, G.H. Structures, Phase Transformations, and Dielectric Properties of BiTaO4 Ceramics. Inorg. Chem. 2016, 55, 11979–11986. [Google Scholar] [CrossRef]
- Vanderah, T.A.; Lufaso, M.W.; Adler, A.U.; Levin, I.; Nino, J.C.; Provenzano, V.; Schenck, P.K. Subsolidus phase equilibria and properties in the system Bi2O3:Mn2O3±x:Nb2O5. J. Sol. St. Chem. 2006, 179, 3467–3477. [Google Scholar] [CrossRef]
- Vanderah, T.A.; Siegrist, T.; Lufaso, M.W.; Yeager, M.C.; Roth, R.S.; Nino, J.C.; Yates, S. Phase Formation and Properties in the System Bi2O3:2CoO1+x:Nb2O5. Eur. J. Inorgan. Chem. 2006, 2006, 4908–4914. [Google Scholar] [CrossRef]
- Valant, M.; Babu, G.S.; Vrcon, M.; Kolodiazhnyi, T.; Axelsson, A.-K. Pyrochlore Range from Bi2O3–Fe2O3–TeO3 System for LTCC and Photocatalysis and the Crystal Structure of New Bi3(Fe0.56Te0.44)3O11. J. Am. Ceram. Soc. 2012, 95, 644–650. [Google Scholar] [CrossRef]
- Valant, M.; Suvorov, D. The Bi2O3-Nb2O5-NiO Phase Diagram. J. Am. Ceram. Soc. 2005, 88, 2540–2543. [Google Scholar] [CrossRef]
- Lufaso, M.W.; Vanderah, T.A.; Pazos, I.M.; Levin, I.; Roth, R.S.; Nino, J.C.; Provenzano, V.; Schenck, P.K. Phase formation, crystal chemistry, and properties in the system Bi2O3–Fe2O3–Nb2O5. J. Sol. St. Chem. 2006, 179, 3900–3910. [Google Scholar] [CrossRef]
- Egorysheva, A.V.; Ellert, O.G.; Maksimov, Y.V.; Volodin, V.D.; Efimov, N.N.; Novotortsev, V.M. Subsolidus phase equilibria and magnetic characterization of the pyrochlore in the Bi2O3–Fe2O3–Sb2Ox system. J. Alloys Compd. 2013, 579, 311–314. [Google Scholar] [CrossRef]
- Chon, M.P.; Tan, K.B.; Zainal, Z.; Taufiq-Yap, Y.H.; Tan, P.Y.; Khaw, C.C.; Chen, S.K. Synthesis and Electrical Properties of Zn-substituted Bismuth Copper Tantalate Pyrochlores. Intern. J. Appl. Ceram. Tech. 2016, 13, 718–725. [Google Scholar] [CrossRef]
- Jusoh, F.A.; Tan, K.B.; Zainal, Z.; Chen, S.K.; Khaw, C.C.; Lee, O.J. Novel pyrochlores in the Bi2O3-Fe2O3-Ta2O5 (BFT) ternary system: Synthesis, structural and electrical properties. J. Mater. Res. Techn. 2020, 9, 11022–11034. [Google Scholar] [CrossRef]
- Khaw, C.C.; Tan, K.B.; Lee, C.K.; West, A.R. Phase equilibria and electrical properties of pyrochlore and zirconolite phases in the Bi2O3–ZnO–Ta2O5 system. J. Eur. Ceram. Soc. 2012, 32, 671–680. [Google Scholar] [CrossRef]
- Chon, M.P.; Tan, K.B.; Khaw, C.C.; Zainal, Z.; Taufiq-Yap, Y.H.; Chen, S.K.; Tan, P.Y. Subsolidus phase equilibria and electrical properties of pyrochlores in the Bi2O3–CuO–Ta2O5 ternary system. J. Alloys Comp. 2016, 675, 116–127. [Google Scholar] [CrossRef]
- Kamiyama, T.; Oikawa, K.; Hoshikawa, A.; Kennedy, B.J.; Kubota, Y.; Kato, K. Static bismuth disorder in Bi2−x(CrTa)O7−y. Mater. Res. Bull. 2004, 39, 553–560. [Google Scholar]
- Zhuk, N.A.; Sekushin, N.A.; Semenov, V.G.; Fedorova, A.V.; Selyutin, A.A.; Krzhizhanovskaya, M.G.; Lutoev, V.P.; Makeev, B.A.; Kharton, V.V.; Sivkov, D.N.; et al. Dielectric properties, Mössbauer study, ESR spectra of Bi2FeTa2O9.5 with pyrochlore structure. J. Alloys Comps. 2022, 903, 163928. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Koroleva, A.V.; Nekipelov, S.V.; Sivkov, D.V.; Sivkov, V.N.; Lebedev, A.M.; Chumakov, R.G.; Makeev, B.A.; Kharton, V.V.; et al. Spectroscopic characterization of cobalt doped bismuth tantalate pyrochlore. Sol. St. Sci. 2022, 125, 106820. [Google Scholar] [CrossRef]
- Lomakin, M.S.; Proskurina, O.V.; Sergeev, A.A.; Buryanenko, I.V.; Semenov, V.G.; Voznesenskiy, S.S.; Gusarov, V.V. Crystal structure and optical properties of the Bi–Fe–W–O pyrochlore phase synthesized via a hydrothermal method. J. Alloys Compd. 2021, 889, 161598. [Google Scholar] [CrossRef]
- Matsuda, C.K.; Barco, R.; Sharma, P.; Biondo, V.; Paesano, A.; da Cunha, J.B.M.; Hallouche, B. Iron-containing pyrochlores: Structural and magnetic characterization. Hyperfine Interact. 2007, 175, 55–61. [Google Scholar] [CrossRef]
- Filoti, G.; Rosenberg, M.; Kuncser, V.; Seling, B.; Fries, T.; Spies, A.; KemmlerSack, S. Magnetic properties and cation distribution in iron containing pyrochlores. J. Alloys Comp. 1998, 268, 16–21. [Google Scholar] [CrossRef]
- Whitaker, M.J.; Marco, J.F.; Berry, F.J.; Raith, C.; Blackburn, E.; Greaves, C. Structural and magnetic characterisation of the pyrochlores Bi2−xFex(FeSb)O7, (x=0.1, 0.2, 0.3), Nd1.8Fe0.2(FeSb)O7 and Pr2(FeSb)O7. J. Solid St. Chem. 2013, 198, 316–322. [Google Scholar] [CrossRef]
- Jusoh, F.A.; Tan, K.B.; Zainal, Z.; Chen, S.K.; Khaw, C.C.; Lee, O.J. Investigation of structural and dielectric properties of subsolidus bismuth iron niobate pyrochlores. J. Asian Ceram. Soc. 2020, 8, 957–969. [Google Scholar] [CrossRef]
- Jusoh, F.A.; Tan, K.B.; Zainal, Z.; Chen, S.K.; Khaw, C.C.; Lee, O.J.; Balachandran, R.; Murthy, H.C.A. Novel pyrochlore-structured bismuth iron antimonates: Structural, impedance and electrochemical studies. Results Phys. 2021, 27, 104542. [Google Scholar] [CrossRef]
- Lebedev, A.M.; Menshikov, K.A.; Nazin, V.G.; Stankevich, V.G.; Tsetlin, M.B.; Chumakov, R.G. NanoPES Photoelectron Beamline of the Kurchatov Synchrotron Radiation Source. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2021, 15, 1039–1044. [Google Scholar] [CrossRef]
- Bruker, A.X.S. Topas 5.0. General Profile and Structure Analysis Software for Powder Diffraction Data; Bruker A.X.S.: Karlsruhe, Germany, 2014. [Google Scholar]
- Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 1921, 5, 17–26. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G. Thermal expansion of bismuth magnesium tantalate and niobate pyrochlores. Ceram. Int. 2021, 47, 30099–30105. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Lutoev, V.P.; Lysyuk, A.Y.; Makeev, B.A.; Belyy, V.A.; Nekipelov, S.V.; Sivkov, V.N.; Koroleva, A.V.; Krzhizhanovskaya, M.G.; Beznosikov, D.S. Thermal behavior, magnetic properties, ESR, XPS, Mössbauer and NEXAFS study of Fe-doped CaCu3Ti4O12 ceramics. J. Alloys Compd. 2021, 855, 157400. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Lutoev, V.P.; Belyy, V.A.; Makeev, B.A.; Beznosikov, D.S.; Nekipelov, S.V.; Yermolina, M.V. EPR and NEXAFS spectroscopy of BiNb1−xFexO4−δ ceramics. Phys. B Condensed Matter. 2019, 552, 142–146. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Koroleva, A.V.; Reveguk, A.A.; Sivkov, D.V.; Nekipelov, S.V. Thermal expansion, crystal structure, XPS and NEXAFS spectra of Fe-doped bismuth tantalate pyrochlore. Ceram. Intern. 2022, 48, 14849–14855. [Google Scholar] [CrossRef]
- Shukla, R.; Vasundhara, K.; Krishna, P.S.R.; Shinde, A.B.; Sali, S.K.; Kulkarni, N.K.; Achary, S.N.; Tyagi, A.K. High temperature structural and thermal expansion behavior of pyrochlore-type praseodymium zirconate. Intern. J. Hydrogen Energy. 2015, 40, 15672–15678. [Google Scholar] [CrossRef]
- Feng, J.; Xiao, B.; Zhou, R.; Pan, W. Thermal expansions of Ln2Zr2O7 (Ln = La, Nd, Sm, and Gd) pyrochlore. J. Appl. Phys. 2012, 111, 103535. [Google Scholar] [CrossRef]
- Raison, P.E.; Pavel, C.C.; Jardin, R.; Suard, E.; Haire, R.G.; Popa, K. Thermal expansion behavior of Ce2Zr2O7 up to 898 K in conjunction with structural analyses by neutron diffraction. Phys. Chem. Miner. 2010, 37, 555–559. [Google Scholar] [CrossRef]
- Khairallah, F.; Glisenti, A. XPS Study of MgO Nanopowders Obtained by Different Preparation Procedures. Surf. Sci. Spectra 2006, 13, 58–71. [Google Scholar] [CrossRef]
- Regan, T.J.; Ohldag, H.; Stamm, C.; Nolting, F.; Luning, J.; Stöhr, J.; White, R.L. Chemical effects at metal/oxide interfaces studied by x-ray-absorption spectroscopy. Phys. Rev. B 2001, 64, 214422. [Google Scholar] [CrossRef]
- Botella, P.; Errandonea, D.; Garg, A.B.; Rodriguez-Hernandez, P.; Muñoz, A.; Achary, S.N.; Vomiero, A. High-pressure characterization of the optical and electronic properties of InVO4, InNbO4, and InTaO4. SN. Appl. Sci. 2019, 1, 389. [Google Scholar]
x = 0.5 | ||||||
Atom | Wyckoff site | x | y | z | SOF | Biso, Å2 |
Bi | 96g | 0 | −0.02489(10) | 0.02489(10) | 0.1146(7) | 1.26(6) |
Ta | 16b | 0.5000 | 0.5000 | 0.5000 | 0.67(6) | 0.60(3) |
Fe | 16b | 0.5000 | 0.5000 | 0.5000 | 0.17(6) | 0.60(3) |
Mg | 16b | 0.5000 | 0.5000 | 0.5000 | 0.16(6) | 0.60(3) |
O1 | 48f | 0.1250 | 0.1250 | 0.4302(4) | 1 | 1.78(15) |
O2 | 8a | 0.1250 | 0.1250 | 0.1250 | 0.56(3) | 1.78(15) |
x = 0.3 | ||||||
Atom | Wyckoff site | x | y | z | SOF | Biso, Å2 |
Bi | 96g | 0 | −0.02516(8) | 0.02516(80) | 0.1125(4) | 0.94(5) |
Ta | 16b | 0.5000 | 0.5000 | 0.5000 | 0.67(6) | 0.54(2) |
Fe | 16b | 0.5000 | 0.5000 | 0.5000 | 0.22(6) | 0.54(2) |
Mg | 16b | 0.5000 | 0.5000 | 0.5000 | 0.11(6) | 0.54(2) |
O1 | 48f | 0.1250 | 0.1250 | 0.4317(3) | 1 | 1.72(12) |
O2 | 8a | 0.1250 | 0.1250 | 0.1250 | 0.66(2) | 1.72(12) |
Index x | x = 0.5 | x = 0.3 |
---|---|---|
a (Å) | 10.51036(3) | 10.49929(4) |
α, β, γ (°) | 90, 90, 90 | |
V (Å 3) | 1161.053(11) | 1157.389(12) |
Dcalc (g/cm3) | 7.57(2) | 7.58(1) |
RB | 0.63 | 0.67 |
Rwp Rp Rexp GOF | 3.16 2.26 2.16 1.46 | 3.68 2.71 2.14 1.72 |
Index x | x = 0.5 | x = 0.3 |
---|---|---|
Bond | Length (Å) | Length (Å) |
Bi1–O1 × 2 | 2.306(2) | 2.304(2) |
–O1 × 2 | 2.344(4) | 2.350(3) |
–O1 × 2 | 2.683(3) | 2.688(2) |
–O2 × 2 | 2.983(4) | 2.987(3) |
<Bi1VIII–O> | 2.58 | 2.58 |
Ta1–O1 × 6 | 1.9959(16) | 1.9898(12) |
<Ta1VI–O> | 2.00 | 1.99 |
Peak | Energy (eV) | |
---|---|---|
1 | 2 | |
Bi4f7/2 | 158.99 | 159.03 |
Bi4f5/2 | 164.31 | 164.35 |
Bi5d5/2 | 25.83 | 26.11 |
Bi5d3/2 | 28.85 | 29.08 |
Ta4f7/2 | 25.39 | 25.66 |
Ta4f5/2 | 27.29 | 27.56 |
Ta4d5/2 | 229.57 | 229.78 |
Ta4d3/2 | 241.32 | 241.44 |
Mg1s | 1302.99 | 1303.19 |
Fe2p3/2 | 710.47 | |
Fe2p1/2 | 724.06 | |
Fe2p sat | 718.92 | |
Fe2p sat | 733.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuk, N.A.; Krzhizhanovskaya, M.G.; Koroleva, A.V.; Semenov, V.G.; Selyutin, A.A.; Lebedev, A.M.; Nekipelov, S.V.; Sivkov, D.V.; Kharton, V.V.; Lutoev, V.P.; et al. Fe,Mg-Codoped Bismuth Tantalate Pyrochlores: Crystal Structure, Thermal Stability, Optical and Electrical Properties, XPS, NEXAFS, ESR, and 57Fe Mössbauer Spectroscopy Study. Inorganics 2023, 11, 8. https://doi.org/10.3390/inorganics11010008
Zhuk NA, Krzhizhanovskaya MG, Koroleva AV, Semenov VG, Selyutin AA, Lebedev AM, Nekipelov SV, Sivkov DV, Kharton VV, Lutoev VP, et al. Fe,Mg-Codoped Bismuth Tantalate Pyrochlores: Crystal Structure, Thermal Stability, Optical and Electrical Properties, XPS, NEXAFS, ESR, and 57Fe Mössbauer Spectroscopy Study. Inorganics. 2023; 11(1):8. https://doi.org/10.3390/inorganics11010008
Chicago/Turabian StyleZhuk, N. A., M. G. Krzhizhanovskaya, A. V. Koroleva, V. G. Semenov, A. A. Selyutin, A. M. Lebedev, S. V. Nekipelov, D. V. Sivkov, V. V. Kharton, V. P. Lutoev, and et al. 2023. "Fe,Mg-Codoped Bismuth Tantalate Pyrochlores: Crystal Structure, Thermal Stability, Optical and Electrical Properties, XPS, NEXAFS, ESR, and 57Fe Mössbauer Spectroscopy Study" Inorganics 11, no. 1: 8. https://doi.org/10.3390/inorganics11010008
APA StyleZhuk, N. A., Krzhizhanovskaya, M. G., Koroleva, A. V., Semenov, V. G., Selyutin, A. A., Lebedev, A. M., Nekipelov, S. V., Sivkov, D. V., Kharton, V. V., Lutoev, V. P., & Makeev, B. A. (2023). Fe,Mg-Codoped Bismuth Tantalate Pyrochlores: Crystal Structure, Thermal Stability, Optical and Electrical Properties, XPS, NEXAFS, ESR, and 57Fe Mössbauer Spectroscopy Study. Inorganics, 11(1), 8. https://doi.org/10.3390/inorganics11010008