Association of Keplerate-Type Polyoxometalate {Mo72Fe30} with Tetracycline: Nature of Binding Sites and Antimicrobial Action
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Müller, A.; Krickemeyer, E.; Meyer, J.; Bögge, H.; Peters, F.; Plass, W.; Diemann, E.; Dillinger, S.; Nonnenbruch, F.; Randerath, M.; et al. [Mo154(NO)14O420(OH)28(H2O)70](25 ± 5)−: A Water-Soluble Big Wheel with More than 700 Atoms and a Relative Molecular Mass of About 24000. Angew. Chem. Int. Ed. Engl. 1995, 34, 2122–2124. [Google Scholar] [CrossRef]
- Müller, A.; Krickemeyer, E.; Bögge, H.; Schmidtmann, M.; Peters, F. Organizational Forms of Matter: An Inorganic Super Fullerene and Keplerate Based on Molybdenum Oxide. Angew. Chem. Int. Ed. 1998, 37, 3359–3363. [Google Scholar] [CrossRef]
- Müller, A.; Sarkar, S.; Shah, S.Q.N.; Bögge, H.; Schmidtmann, M.; Sarkar, S.; Kögerler, P.; Hauptfleisch, B.; Trautwein, A.X.; Schünemann, V. Archimedean Synthesis and Magic Numbers: “Sizing” Giant Molybdenum-Oxide-Based Molecular Spheres of the Keplerate Type. Angew. Chem. Int. Ed. 1999, 38, 3238–3241. [Google Scholar] [CrossRef]
- Ostroushko, A.A.; Safronov, A.P.; Tonkushina, M.O. Thermochemical Study of Interaction between Nanocluster Polyoxomolybdates and Polymers in Film Compositions. Russ. J. Phys. Chem. A 2014, 88, 295–300. [Google Scholar] [CrossRef]
- Grzhegorzhevskii, K.V.; Tonkushina, M.O.; Fokin, A.V.; Belova, K.G.; Ostroushko, A.A. Coordinative Interaction between Nitrogen Oxides and Iron–Molybdenum POM Mo 72 Fe 30. Dalt. Trans. 2019, 48, 6984–6996. [Google Scholar] [CrossRef]
- Grzhegorzhevskii, K.V.; Denikaev, A.D.; Morozova, M.V.; Pryakhina, V.; Khairullina, E.; Tumkin, I.; Taniya, O.; Ostroushko, A.A. The Precise Modification of a Nanoscaled Keplerate-Type Polyoxometalate with NH 2 -Groups: Reactive Sites, Mechanisms and Dye Conjugation. Inorg. Chem. Front. 2022, 9, 1541–1555. [Google Scholar] [CrossRef]
- Fazylova, V.; Shevtsev, N.; Mikhailov, S.; Kim, G.; Ostroushko, A.; Grzhegorzhevskii, K. Fundamental Aspects of Xanthene Dye Aggregation on the Surfaces of Nanocluster Polyoxometalates: H- to J-Aggregate Switching. Chem. A Eur. J. 2020, 26, 5685–5693. [Google Scholar] [CrossRef]
- Ostroushko, A.; Gagarin, I.; Tonkushina, M.; Grzhegorzhevskii, K.; Russkikh, O. Association of Spherical Porous Nanocluster Keplerate-Type Polyoxometalate Mo72Fe30 with Biologically Active Substances. J. Clust. Sci. 2018, 29, 111–120. [Google Scholar] [CrossRef]
- Tonkushina, M.O.; Belozerova, K.A.; Gagarin, I.D.; Adamova, L.V.; Terziyan, T.V.; Russkikh, O.V.; Ostroushko, A.A. Thermodynamics of the Interaction between Keplerate-Type Polyoxometalate {Mo72Fe30} and Vitamin B1. Thermochim. Acta 2022, 711, 179201. [Google Scholar] [CrossRef]
- Elistratova, J.; Akhmadeev, B.; Gubaidullin, A.; Korenev, V.; Sokolov, M.; Nizameev, I.; Stepanov, A.; Ismaev, I.; Kadirov, M.; Voloshina, A.; et al. Nanoscale Hydrophilic Colloids with High Relaxivity and Low Cytotoxicity Based on Gd(Iii) Complexes with Keplerate Polyanions. New J. Chem. 2017, 41, 5271–5275. [Google Scholar] [CrossRef]
- Ostroushko, A.A.; Danilova, I.G.; Gette, I.F.; Medvedeva, S.Y.; Tonkushina, M.O.; Prokofieva, A.V.; Morozova, M.V. Study of Safety of Molybdenum and Iron-Molybdenum Nanoclaster Polyoxometalates Intended for Targeted Delivery of Drugs. J. Biomater. Nanobiotechnol. 2011, 2, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Ostroushko, A.A.; Gagarin, I.D.; Grzhegorzhevskii, K.V.; Gette, I.F.; Vlasov, D.A.; Ermoshin, A.A.; Antosyuk, O.N.; Shikhova, S.V.; Danilova, I.G. The Physicochemical Properties and Influence on Living Organisms of Nanocluster Polyoxomolybdates as Prospective Bioinspired Substances (Based on Materials from the Plenary Lecture). J. Mol. Liq. 2020, 301, 110910. [Google Scholar] [CrossRef]
- Ostroushko, A.A.; Gagarin, I.D.; Tonkushina, M.O.; Grzhegorzhevskii, K.V.; Danilova, I.G.; Gette, I.F.; Kim, G.A. Iontophoretic Transport of Associates Based on Porous Keplerate-Type Cluster Polyoxometalate Mo72Fe30 and Containing Biologically Active Substances. Russ. J. Phys. Chem. A 2017, 91, 1811–1815. [Google Scholar] [CrossRef]
- Ostroushko, A.A.; Grzhegorzhevskii, K.V.; Medvedeva, S.Y.; Gette, I.F.; Tonkushina, M.O.; Gagarin, I.D.; Danilova, I.G. Physicochemical and Biochemical Properties of the Keplerate-Type Nanocluster Polyoxomolybdates as Promising Components for Biomedical Use. Nanosyst. Phys. Chem. Math. 2021, 12, 81–112. [Google Scholar] [CrossRef]
- Ostroushko, A.A.; Ulitko, M.V.; Tonkushina, M.O.; Zubarev, I.V.; Medvedeva, S.Y.; Danilova, I.G.; Gubaeva, O.V.; Gagarin, I.D.; Gette, I.F. Influence of Nanocluster Molybdenum Polyoxometalates on the Morphofunctional State of Fibroblasts in Culture. Nanotechnol. Russ. 2018, 13, 1–10. [Google Scholar] [CrossRef]
- Karthikeyan, G.; Mohanraj, K.; Elango, K.P.; Girishkumar, K. Synthesis, Spectroscopic Characterization and Antibacterial Activity of Lanthanide–Tetracycline Complexes. Transit. Met. Chem. 2004, 29, 86–90. [Google Scholar] [CrossRef]
- Wang, H.; Yao, H.; Sun, P.; Li, D.; Huang, C.-H. Transformation of Tetracycline Antibiotics and Fe (II) and Fe (III) Species Induced by Their Complexation. Environ. Sci. Technol. 2016, 50, 145–153. [Google Scholar] [CrossRef]
- Guerra, W.; Silva-Caldeira, P.P.; Terenzi, H.; Pereira-Maia, E.C. Impact of Metal Coordination on the Antibiotic and Non-Antibiotic Activities of Tetracycline-Based Drugs. Coord. Chem. Rev. 2016, 327–328, 188–199. [Google Scholar] [CrossRef]
- Liu, T.; Imber, B.; Diemann, E.; Liu, G.; Cokleski, K.; Li, H.; Chen, Z.; Müller, A. Deprotonations and Charges of Well-Defined {Mo 72 Fe 30} Nanoacids Simply Stepwise Tuned by PH Allow Control/Variation of Related Self-Assembly Processes. J. Am. Chem. Soc. 2006, 128, 15914–15920. [Google Scholar] [CrossRef]
- Izzet, G.; Ménand, M.; Matt, B.; Renaudineau, S.; Chamoreau, L.M.; Sollogoub, M.; Proust, A. Cyclodextrin-Induced Auto-Healing of Hybrid Polyoxometalates. Angew. Chem. Int. Ed. 2012, 51, 487–490. [Google Scholar] [CrossRef]
- Assaf, K.I.; Ural, M.S.; Pan, F.; Georgiev, T.; Simova, S.; Rissanen, K.; Gabel, D.; Nau, W.M. Water Structure Recovery in Chaotropic Anion Recognition: High-Affinity Binding of Dodecaborate Clusters to γ-Cyclodextrin. Angew. Chem. Int. Ed. 2015, 54, 6852–6856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falaise, C.; Khlifi, S.; Bauduin, P.; Schmid, P.; Shepard, W.; Ivanov, A.A.; Sokolov, M.N.; Shestopalov, M.A.; Abramov, P.A.; Cordier, S.; et al. “Host in Host” Supramolecular Core–Shell Type Systems Based on Giant Ring-Shaped Polyoxometalates. Angew. Chem. Int. Ed. 2021, 60, 14146–14153. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.A.; Falaise, C.; Shmakova, A.A.; Leclerc, N.; Cordier, S.; Molard, Y.; Mironov, Y.V.; Shestopalov, M.A.; Abramov, P.A.; Sokolov, M.N.; et al. Cyclodextrin-Assisted Hierarchical Aggregation of Dawson-Type Polyoxometalate in the Presence of {Re 6 Se 8} Based Clusters. Inorg. Chem. 2020, 59, 11396–11406. [Google Scholar] [CrossRef] [PubMed]
- Naskar, B.; Diat, O.; Nardello-Rataj, V.; Bauduin, P. Nanometer-Size Polyoxometalate Anions Adsorb Strongly on Neutral Soft Surfaces. J. Phys. Chem. C 2015, 119, 20985–20992. [Google Scholar] [CrossRef]
- Korenev, V.S.; Dorovatovskii, P.V.; Lazarenko, V.A.; Abramov, P.A.; Sokolov, M.N. Structural Features of Selenate Based {Mo 132} Keplerate Capsules. Cryst. Eng. Comm. 2022, 24, 321–329. [Google Scholar] [CrossRef]
- Grzhegorzhevskii, K.V.; Zelenovskiy, P.S.; Koryakova, O.V.; Ostroushko, A.A. Thermal Destruction of Giant Polyoxometalate Nanoclusters: A Vibrational Spectroscopy Study. Inorg. Chim. Acta 2019, 489, 287–300. [Google Scholar] [CrossRef]
- Ostroushko, A.A.; Tonkushina, M.O.; Safronov, A.P.; Korotaev, V.Y.; Vazhenin, V.A.; Kolosov, V.Y.; Martynova, N.A.; Kutyashev, I.B.; Bogdanov, S.G.; Pirogov, A.N.; et al. Study of the Stability of Solid Polyoxometalate Mo72Fe30 with a Buckyball Structure. Russ. J. Inorg. Chem. 2012, 57, 858–863. [Google Scholar] [CrossRef]
- Tonkushina, M.O.; Grzhegorzhevskii, K.V.; Ermoshin, A.A.; Tugbaeva, A.S.; Kim, G.A.; Taniya, O.S.; Gagarin, I.D.; Ostroushko, A.A. The Electrostatic-Mediated Formation of a Coordination Complex: The Trapping and Release of an Antitumor Drug with an Anthracycline Core from {Mo 72 Fe 30}-Based Ensembles. Chem. Sel. 2022, 7, e202203684. [Google Scholar] [CrossRef]
- Myers, H.M.; Tochon-Danguy, H.J.; Baud, C.A. IR Absorption Spectrophotometric Analysis of the Complex Formed by Tetracycline and Synthetic Hydroxyapatite. Calcif. Tissue Int. 1983, 35, 745–749. [Google Scholar] [CrossRef]
- Mohammed, O.F.; Xiao, D.; Batista, V.S.; Nibbering, E.T.J. Excited-State Intramolecular Hydrogen Transfer (ESIHT) of 1,8-Dihydroxy-9,10-Anthraquinone (DHAQ) Characterized by Ultrafast Electronic and Vibrational Spectroscopy and Computational Modeling. J. Phys. Chem. A 2014, 118, 3090–3099. [Google Scholar] [CrossRef]
- Bellamy, L.J. The Infra-Red Spectra of Complex Molecules; Springer: Dordrecht, The Netherlands, 1975; ISBN 978-94-011-6017-9. [Google Scholar]
- Cervini, P.; Machado, L.C.M.; Ferreira, A.P.G.; Ambrozini, B.; ÿder Cavalheiro, T.G. Thermal Decomposition of Tetracycline and Chlortetracycline. J. Anal. Appl. Pyrolysis 2016, 118, 317–324. [Google Scholar] [CrossRef]
- Filgueiras, A.L.; Paschoal, D.; Dos Santos, H.F.; Sant’Ana, A.C. Adsorption Study of Antibiotics on Silver Nanoparticle Surfaces by Surface-Enhanced Raman Scattering Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Gražulis, S.; Daškevič, A.; Merkys, A.; Chateigner, D.; Lutterotti, L.; Quirós, M.; Serebryanaya, N.R.; Moeck, P.; Downs, R.T.; Le Bail, A. Crystallography Open Database (COD): An Open-Access Collection of Crystal Structures and Platform for World-Wide Collaboration. Nucleic Acids Res. 2012, 40, D420–D427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupodorova, T.A.; Barshteyn, V.Y.; Zabeida, E.F.; Pokas, E.V. Antibacterial Activity of Macromycetes Mycelia and Culture Liquid. Microbiol. Biotechnol. Lett. 2016, 44, 246–253. [Google Scholar] [CrossRef]
{Mo72Fe30}@TC12.5 | Fe1-O1 | (Fe2)Ot-N+ | Fe3-Ot | Fe3-O3 | (Mo)Ot-H(amide) |
---|---|---|---|---|---|
2.185 Å | 2.194 Å | 2.097 Å | 2.589 Å | 2.386–3.260 Å |
Strain | Average Diameters of Sterile Zones (mm) for E. coli Strains | ||||||||
---|---|---|---|---|---|---|---|---|---|
TC | {Mo72Fe30} | MoVI | FeIII | DP | {Mo72Fe30}@TC12.5 | TC+MoVI | TC+FeIII | TC+DP | |
HB101 | 8.3 ± 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 6.3 ± 0.5 | 7.3 ± 0.4 | 6.0 ± 0.4 | 6.2 ± 1.2 |
JM110 | 7.7 ± 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 6.2 ± 0.8 | 7.5 ± 0.0 | 7.7 ± 0.7 | 4.8 ± 0.2 |
ТОР10 | 6.7 ± 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2 ± 0.2 | 5.5 ± 0.0 | 6.0 ± 0.0 | 6.2 ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzhegorzhevskii, K.; Tonkushina, M.; Gushchin, P.; Gagarin, I.; Ermoshin, A.; Belova, K.; Prokofyeva, A.; Ostroushko, A.; Novikov, A. Association of Keplerate-Type Polyoxometalate {Mo72Fe30} with Tetracycline: Nature of Binding Sites and Antimicrobial Action. Inorganics 2023, 11, 9. https://doi.org/10.3390/inorganics11010009
Grzhegorzhevskii K, Tonkushina M, Gushchin P, Gagarin I, Ermoshin A, Belova K, Prokofyeva A, Ostroushko A, Novikov A. Association of Keplerate-Type Polyoxometalate {Mo72Fe30} with Tetracycline: Nature of Binding Sites and Antimicrobial Action. Inorganics. 2023; 11(1):9. https://doi.org/10.3390/inorganics11010009
Chicago/Turabian StyleGrzhegorzhevskii, Kirill, Margarita Tonkushina, Pavel Gushchin, Ilya Gagarin, Alexander Ermoshin, Kseniya Belova, Anna Prokofyeva, Alexander Ostroushko, and Alexander Novikov. 2023. "Association of Keplerate-Type Polyoxometalate {Mo72Fe30} with Tetracycline: Nature of Binding Sites and Antimicrobial Action" Inorganics 11, no. 1: 9. https://doi.org/10.3390/inorganics11010009
APA StyleGrzhegorzhevskii, K., Tonkushina, M., Gushchin, P., Gagarin, I., Ermoshin, A., Belova, K., Prokofyeva, A., Ostroushko, A., & Novikov, A. (2023). Association of Keplerate-Type Polyoxometalate {Mo72Fe30} with Tetracycline: Nature of Binding Sites and Antimicrobial Action. Inorganics, 11(1), 9. https://doi.org/10.3390/inorganics11010009