Synthesis, Photophysical Properties, and Toxicity of o-Xylene-Bridged Porphyrin Dimers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Initial A3B Porphyrins and Their Dimers
2.2. Photophysical Properties
2.3. Aggregation Behavior
2.4. Surface Morphology of the Particles
2.5. Cytotoxicity
3. Experimental
3.1. Solubilization in Surfactant Micelles
3.2. Photochemical Measurements
3.3. UV-Vis Spectroscopy
3.4. MTT Test
3.5. Synthesis
3.5.1. Compound 4
3.5.2. Compound 5
3.5.3. Compound 4-Zn
3.5.4. Compound 5-Zn
3.5.5. Compound 6
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ethirajan, M.; Chen, Y. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 2011, 40, 340–362. [Google Scholar] [CrossRef] [PubMed]
- Jenni, S.; Sour, A. Molecular Theranostic Agents for Photodynamic Therapy (PDT) and Magnetic Resonance Imaging (MRI). Inorganics 2019, 7, 10. [Google Scholar] [CrossRef]
- Yang, F.; Xu, M. Spotlight on porphyrins: Classifications, mechanisms and medical applications. Biomed. Pharmacother. 2023, 164, 114933. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wang, J. Development of porphyrin-based fluorescent sensors and sensor arrays for saccharide recognition. Chin. Chem. Lett. 2023; 109008, in press. [Google Scholar] [CrossRef]
- Balu, K.; Kaliyamoorthy, S. Porphyrins and ZnO hybrid semiconductor materials: A review. Inorg. Chem. Commun. 2023, 154, 110973. [Google Scholar] [CrossRef]
- Plekhova, N.; Shevchenko, O. Development of Novel Tetrapyrrole Structure Photosensitizers for Cancer Photodynamic Therapy. Bioengineering 2022, 9, 82. [Google Scholar] [CrossRef]
- Tian, J.; Huang, B. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coord. Chem. Rev. 2020, 420, 213410. [Google Scholar] [CrossRef]
- Park, J.M.; Lee, J.H. Applications of porphyrins in emerging energy conversion technologies. Coord. Chem. Rev. 2020, 407, 213157. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y. Direct [4 + 2] Cycloaddition to Isoquinoline-Fused Porphyrins for Near-Infrared Photodynamic Anticancer Agents. Org. Lett. 2022, 24, 175–180. [Google Scholar] [CrossRef]
- Smirnov, A.S.; Grin, M.A. Synthesis and properties of Cu- and Pd-complexes of cyclen conjugates with pheophorbide and bacteriopheophorbide. Fine Chem. Technol. 2019, 14, 95–103. [Google Scholar] [CrossRef]
- Mironov, A.F.; Ostroverkhov, P.V. Amino acid derivatives of natural chlorins as a platform for the creation of targeted photosensitizers in oncology. Fine Chem. Technol. 2020, 15, 16–33. [Google Scholar] [CrossRef]
- Antipin, I.S.; Alfimov, M.V. Functional supramolecular systems: Design and applications. Russ. Chem. Rev. 2021, 90, 895. [Google Scholar] [CrossRef]
- Burrell, A.K.; Officer, D.L. Synthetic routes to multiporphyrin arrays. Chem. Rev. 2001, 101, 2751–2796. [Google Scholar] [CrossRef] [PubMed]
- Satake, A.; Kobuke, Y. Artificial photosynthetic systems: Assemblies of slipped cofacial porphyrins and phthalocyanines showing strong electronic coupling. Org. Biomol. Chem. 2007, 5, 1679–1691. [Google Scholar] [CrossRef] [PubMed]
- Mchiri, C.; Gassoumi, B. New cadmium(II) porphyrin-based coordination dimer: Experimental and theoretic studies. J. Solid State Chem. 2022, 314, 123364. [Google Scholar] [CrossRef]
- Tyurin, V.S.; Yashchuk, Y.P. Supramolecular self-assembly of 5,10,15,20-tetrakis-(3-hydroxyphenyl)porphyrinatozinc with some transition metals and bidentate ligands. Russ. J. Org. Chem. 2008, 44, 1378–1383. [Google Scholar] [CrossRef]
- Martin, K.E.; Wang, Z. Donor−Acceptor Biomorphs from the Ionic Self-Assembly of Porphyrins. J. Am. Chem. Soc. 2010, 132, 8194–8201. [Google Scholar] [CrossRef]
- Mamardashvili, G.M.; Kaigorodova, E.Y.; Lebedev, I.S.; Khodov, I.A.; Mamardashvili, N.Z. Supramolecular assembly of hydrophilic Co(III)-porphyrin with bidentate ligands in aqueous buffer media. Inorg. Chim. Acta 2022, 538, 120972. [Google Scholar] [CrossRef]
- Ravikumar, M.; Farley, C. 1,3–diyne bridged porphyrin dimers via Cu-catalysis: Synthesis, optical properties and application in fullerene binding. J. Mol. Struct. 2021, 1240, 130570. [Google Scholar] [CrossRef]
- Moreira, L.; Valbo, J. Conjugated Porphyrin Dimers: Cooperative Effects and Electronic Communication in Supramolecular Ensembles with C60. J. Am. Chem. Soc. 2016, 138, 15359–15367. [Google Scholar] [CrossRef]
- Luechai, A.; Pootrakulchote, N. Photosensitizing triarylamine- and triazine-cored porphyrin dimers for dye-sensitized solar cells. Organomet. Chem. 2014, 753, 27–33. [Google Scholar] [CrossRef]
- Piradi, V.; Xu, X. Panchromatic Ternary Organic Solar Cells with Porphyrin Dimers and Absorption-Complementary Benzodithiophene-based Small Molecules. ACS Appl. Mater. Interfaces 2019, 11, 6283–6291. [Google Scholar] [CrossRef] [PubMed]
- Okuda, Y.; Fukui, N. A meso–meso β-β β-β Triply Linked Subporphyrin Dimer. Angew. Chem. Int. Ed. 2017, 56, 12317. [Google Scholar] [CrossRef] [PubMed]
- Bhuse, D.V.; Bhuse, V.M. Ant-like small molecule metal-free dimeric porphyrin sensitizer for true energy-generating DSSC with 9.3% efficiency. J. Mater. Sci. Mater. Electron. 2022, 33, 14305–14322. [Google Scholar] [CrossRef]
- Xia, Y.; Shuai, L. Designing bifuncitonal molecular devices with a metalloporphyrin dimer. Phys. Chem. Chem. Phys. 2020, 22, 4080–4085. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.; Hammerer, F. Carbohydrate-conjugated porphyrin dimers: Synthesis and photobiological evaluation for a potential application in one-photon and two-photon photodynamic therapy. Bioorg. Med. Chem. 2013, 21, 153–165. [Google Scholar] [CrossRef]
- Mazur, L.M.; Roland, T. Efficient Singlet Oxygen Photogeneration by Zinc Porphyrin Dimers upon One- and Two-Photon Excitation. J. Phys. Chem. B 2019, 123, 4271–4277. [Google Scholar] [CrossRef]
- Schmitt, J.; Jenni, S. A Porphyrin Dimer–GdDOTA Conjugate as a Theranostic Agent for One- and Two-Photon Photodynamic Therapy and MRI. Bioconj. Chem. 2018, 29, 3726–3738. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Zahran, Z.N. Covalent bonds immobilization of cofacial Mn porphyrin dimers on an ITO electrode for efficient water oxidation in aqueous solutions. J. Catal. 2017, 352, 293–299. [Google Scholar] [CrossRef]
- Kumar, R.S.; Ryu, J. Synthesis, characterization, and photocatalytic disinfection studies of porphyrin dimer/TiO2-based photocatalyst. J. Mol. Struct. 2021, 1236, 130276. [Google Scholar] [CrossRef]
- Yaschuk, Y.P.; Tyurin, V.S. Trimer Porphyrin Star. Macroheterocycles 2012, 5, 302–307. [Google Scholar] [CrossRef]
- Higashino, T.; Kurumisawa, Y. ABC–ABC-Type Directly meso–meso Linked Porphyrin Dimers. Chem. Eur. J. 2019, 25, 538–547. [Google Scholar] [CrossRef]
- Belcher, W.J.; Burrell, A.K. The synthesis of specifically metallated heterobimetallic dimeric porphyrins. J. Porphyr. Phthalocyanines 2002, 6, 720–736. [Google Scholar] [CrossRef]
- Fletcher, J.T.; Therien, M.J. Transition-Metal-Mediated [2 + 2 + 2] Cycloaddition Reactions with Ethyne-Containing Porphyrin Templates: New Routes to Cofacial Porphyrin Structures and Facially-Functionalized (Porphinato)metal Species. J. Am. Chem. Soc. 2000, 122, 12393–12394. [Google Scholar] [CrossRef]
- Takai, A.; Gros, C. Enhanced Electron-Transfer Properties of Cofacial Porphyrin Dimers through π–π Interactions S. Chem. Eur. J. 2009, 15, 3110–3122. [Google Scholar] [CrossRef] [PubMed]
- Pushkarev, V.E.; Tolbin, A.Y. Sandwich Double-Decker Lanthanide(III) “Intracavity” Complexes Based on Clamshell-Type Phthalocyanine Ligands: Synthesis, Spectral, Electrochemical, and Spectroelectrochemical Investigations. Chem. Eur. J. 2012, 18, 9046–9055. [Google Scholar] [CrossRef]
- Tolbin, A.Y.; Pushkarev, V.E. Directed synthesis of bi- and polynuclear clamshell-type phthalocyanines and their physico-chemical investigations. J. Porphyr. Phthalocyanines 2012, 16, 341–350. [Google Scholar] [CrossRef]
- Zhdanova, K.A.; Zhdanov, A.P. Synthesis of amino-containing meso-aryl-substituted porphyrins and their conjugates with the closo-decaborate anion. Russ. Chem. Bull. 2014, 1, 194–200. [Google Scholar] [CrossRef]
- Adler, A.D.; Longo, E.R. Mechanistic Investigations of Porphyrin Syntheses. I. Preliminary Studies on ms-Tetraphenylporphin. J. Am. Chem. Soc. 1964, 86, 3145–3149. [Google Scholar] [CrossRef]
- Gradova, M.A.; Gradov, O.V. Self-assembly of amphiphilic meso-aryl-substituted porphyrin derivatives in the presence of surfactants. J. Porphyr. Phthalocyanines 2020, 24, 505–514. [Google Scholar] [CrossRef]
- Taniguchi, M.; Lindsey, J.S. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP)—Critical benchmark molecules in photochemistry and photosynthesis. J. Photochem. Photobiol. C Photochem. Rev. 2021, 46, 100401. [Google Scholar] [CrossRef]
- Ormond, A.B.; Freeman, H.S. Effects of substituents on the photophysical properties of symmetrical porphyrins. Dye. Pigments 2013, 96, 440–448. [Google Scholar] [CrossRef]
- Spiller, W.; Kliesch, H. Singlet Oxygen Quantum Yields of Different Photosensitizers in Polar Solvents and Micellar Solutions. J. Porphyr. Phthalocyanines 1998, 2, 145–158. [Google Scholar] [CrossRef]
- Yao, G.; Zhang, Z. Synthesis of three novel imidazolyl-appended porphyrins and their cytostatic and phototoxic activity on A431 cells. J. Porphyr. Phthalocyanines 2013, 17, 1113–1119. [Google Scholar] [CrossRef]
- Zhdanova, K.A.; Ivantsova, A.V. Design of A3B-Porphyrin Conjugates with Terpyridine as Potential Theranostic Agents: Synthesis, Complexation with Fe(III), Gd(III), and Photodynamic Activity. Pharmaceutics 2023, 15, 269. [Google Scholar] [CrossRef]
Compound | Base | Reaction Temperature °C | Reaction Time, h | Yield, % |
---|---|---|---|---|
4 | K2CO3 | 100 | 5 | 35 |
Cs2CO3 | 100 | 5 | 82 | |
DIPEA | 100 | 5 | traces | |
5 | K2CO3 | 100 | 5 | 32 |
Cs2CO3 | 100 | 5 | 85 | |
DIPEA | 100 | 5 | traces | |
4-Zn | K2CO3 | 100 | 5 | 40 |
Cs2CO3 | 100 | 5 | 85 | |
DIPEA | 100 | 5 | traces | |
5-Zn | K2CO3 | 100 | 5 | 45 |
Cs2CO3 | 100 | 5 | 89 | |
DIPEA | 100 | 5 | traces |
1 | 4 | 1-Zn | 4-Zn | 2 | 5 | 2-Zn | 5-Zn | |
---|---|---|---|---|---|---|---|---|
λmax, nm | 416 | 418 | 428 | 426 | 422 | 422 | 426 | 426 |
Δλ1/2, nm | 12 | 16 | 11 | 13 | 14 | 12 | 10 | 13 |
λem1,2, nm | 651, 718 | 652, 717 | 606, 659 | 609, 662 | 661, 724 | 661, 724 | 614, 665 | 610, 662 |
I1/I2 | 3.11 | 3.15 | 1.46 | 1.64 | 4.26 | 3.81 | 2.36 | 1.58 |
ΦF a | 0.061 | 0.062 | 0.011 | 0.020 | 0.118 | 0.115 | 0.028 | 0.044 |
ΦΔ b | 0.64 | 0.49 | 0.76 | 0.68 | 0.50 | 0.46 | 0.81 | 0.71 |
1 | 4 | 1-Zn | 4-Zn | 2 | 5 | 2-Zn | 5-Zn | |
---|---|---|---|---|---|---|---|---|
H2O | ||||||||
λmax, nm | 422 | 420 | 428 | 428 | 422 | 424 | 430 | 428 |
Δλ1/2, nm | 46 | 44 | 36 | 32 | 37 | 33 | 37 | 33 |
λem1,2, nm | 655, 717 | 655, 721 | 610, 652 | 607, 655 | 658, 724 | 661, 725 | 613, 644 | 611, 647 |
I1/I2 | 3.00 | 2.38 | 0.52 | 0.65 | 2.12 | 3.35 | 0.98 | 0.53 |
SDS | ||||||||
λmax, nm | 418 | 420 | 424 | 426 | 424 | 424 | 429 | 426 |
Δλ1/2, nm | 38 | 41 | 31 | 31 | 31 | 35 | 38 | 32 |
λem1,2, nm | 655, 719 | 656, 721 | 606, 656 | 608, 653 | 659, 733 | 660, 723 | 611, 644 | 608, 648 |
I1/I2 | 3.19 | 2.50 | 1.06 | 0.55 | 1.07 | 3.05 | 0.76 | 0.61 |
CTAB | ||||||||
λmax, nm | 418 | 420 | 424 | 426 | 424 | 424 | 432 | 426 |
Δλ1/2, nm | 39 | 40 | 29 | 32 | 35 | 36 | 42 | 34 |
λem1,2, nm | 657, 719 | 655, 719 | 610, 650 | 608, 650 | 663, 724 | 660, 724 | 616, 650 | 610, 652 |
I1/I2 | 3.14 | 2.47 | 0.40 | 0.28 | 2.93 | 2.92 | 0.57 | 0.31 |
TX-100 | ||||||||
λmax, nm | 418 | 420 | 426 | 426 | 424 | 422 | 428 | 426 |
Δλ1/2, nm | 13 | 17 | 11 | 16 | 22 | 20 | 15 | 16 |
λem1,2, nm | 652, 718 | 654, 719 | 605, 657 | 610, 650 | 660, 724 | 659, 723 | 613, 663 | 609, 653 |
I1/I2 | 2.98 | 2.08 | 1.27 | 0.33 | 3.89 | 3.46 | 1.96 | 0.57 |
Compound | Toxicity IC50 (µg/mL) |
---|---|
HEK293T | |
1 | 720.20 ± 35.51 |
1-Zn | 575.10 ± 42.70 |
2-Zn | 171.82 ± 28.63 |
4 | 147.71 ± 41.16 |
4-Zn | 129.38 ± 36.44 |
5-Zn | 111.84 ± 38.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhdanova, K.A.; Zaytsev, A.A.; Gradova, M.A.; Gradov, O.V.; Lobanov, A.V.; Novikov, A.S.; Bragina, N.A. Synthesis, Photophysical Properties, and Toxicity of o-Xylene-Bridged Porphyrin Dimers. Inorganics 2023, 11, 415. https://doi.org/10.3390/inorganics11100415
Zhdanova KA, Zaytsev AA, Gradova MA, Gradov OV, Lobanov AV, Novikov AS, Bragina NA. Synthesis, Photophysical Properties, and Toxicity of o-Xylene-Bridged Porphyrin Dimers. Inorganics. 2023; 11(10):415. https://doi.org/10.3390/inorganics11100415
Chicago/Turabian StyleZhdanova, Kseniya A., Andrey A. Zaytsev, Margarita A. Gradova, Oleg V. Gradov, Anton V. Lobanov, Alexander S. Novikov, and Natal’ya A. Bragina. 2023. "Synthesis, Photophysical Properties, and Toxicity of o-Xylene-Bridged Porphyrin Dimers" Inorganics 11, no. 10: 415. https://doi.org/10.3390/inorganics11100415
APA StyleZhdanova, K. A., Zaytsev, A. A., Gradova, M. A., Gradov, O. V., Lobanov, A. V., Novikov, A. S., & Bragina, N. A. (2023). Synthesis, Photophysical Properties, and Toxicity of o-Xylene-Bridged Porphyrin Dimers. Inorganics, 11(10), 415. https://doi.org/10.3390/inorganics11100415