Combustion Synthesis of Nanocrystalline Ba1.3Ca0.7SiO4 Semiconductors Using Urea as an Energy Efficient Fuel
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mondal, K.; Kumari, P.; Manam, J. Influence of doping and annealing temperature on the structural and optical properties of Mg2SiO4: Eu3+ synthesized by combustion method. Curr. Appl. Phys. 2016, 16, 707–719. [Google Scholar] [CrossRef]
- Naik, R.; Prashantha, S.; Nagabhushana, H.; Sharma, S.; Nagabhushana, B.; Nagaswarupa, H.; Premkumar, H. Low temperature synthesis and photoluminescence properties of red emitting Mg2SiO4: Eu3+ nanophosphor for near UV light emitting diodes. Sens. Actuators B Chem. 2014, 195, 140–149. [Google Scholar] [CrossRef]
- Hiramatsu, H.; Yusa, H.; Igarashi, R.; Ohishi, Y.; Kamiya, T.; Hosono, H. An exceptionally narrow band-gap (∼4 eV) silicate predicted in the cubic perovskite structure: BaSiO3. Inorg. Chem. 2017, 56, 10535–10542. [Google Scholar] [CrossRef] [PubMed]
- ALOthman, Z.A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Chang, J.; Ni, S.; Wang, J. In vitro bioactivity of akermanite ceramics. J. Biomed. Mater. Res. Part A 2006, 76, 73–80. [Google Scholar] [CrossRef]
- Alvani, A.S.; Moztarzadeh, F.; Sarabi, A. Effects of dopant concentrations on phosphorescence properties of Eu/Dy-doped Sr3MgSi2O8. J. Lumin. 2005, 114, 131–136. [Google Scholar] [CrossRef]
- Pan, W.; Ning, G.-L.; Wang, J.-H.; Lin, Y. A novel synthesis of alkaline earth silicate phosphor Sr3MgSi2O8: Eu2+,Dy3+. Chin. J. Chem. 2007, 25, 605–608. [Google Scholar] [CrossRef]
- Pritts, I.M.; Daugherty, K.E. The effect of stabilizing agents on the hydration rate of β-C2S. Cem. Concr. Res. 1976, 6, 783–795. [Google Scholar] [CrossRef]
- Nettleship, I.; Shull, J.L.; Kriven, W.M. Chemical preparation and phase stability of Ca2SiO4 and Sr2SiO4 powders. J. Eur. Ceram. Soc. 1993, 11, 291–298. [Google Scholar] [CrossRef]
- Singh, D.; Sheoran, S.; Bhagwan, S.; Kadyan, S. Optical characteristics of sol-gel derived M3SiO5: Eu3+ (M= Sr, Ca and Mg) nanophosphors for display device technology. Cogent Phys. 2016, 3, 1262573. [Google Scholar] [CrossRef]
- Varma, A.; Mukasyan, A.S.; Rogachev, A.S.; Manukyan, K.V. Solution combustion synthesis of nanoscale materials. Chem. Rev. 2016, 116, 14493–14586. [Google Scholar] [CrossRef]
- Patil, K.C.; Aruna, S.; Mimani, T. Combustion synthesis: An update. Curr. Opin. Solid State Mater. Sci. 2002, 6, 507–512. [Google Scholar] [CrossRef]
- Wen, W.; Wu, J.-M. Nanomaterials via solution combustion synthesis: A step nearer to controllability. RSC Adv. 2014, 4, 58090–58100. [Google Scholar] [CrossRef]
- Siddique, F.; Gonzalez-Cortes, S.; Mirzaei, A.; Xiao, T.; Rafiq, M.A.; Zhang, X. Solution combustion synthesis: The relevant metrics for producing advanced and nanostructured photocatalysts. Nanoscale 2022, 14, 11806–11868. [Google Scholar] [CrossRef]
- Deganello, F.; Tyagi, A.K. Solution combustion synthesis, energy and environment: Best parameters for better materials. Prog. Cryst. Growth Charact. Mater. 2018, 64, 23–61. [Google Scholar] [CrossRef]
- Novitskaya, E.; Kelly, J.P.; Bhaduri, S.; Graeve, O.A. A review of solution combustion synthesis: An analysis of parameters controlling powder characteristics. Int. Mater. Rev. 2020, 66, 188–214. [Google Scholar] [CrossRef]
- Aruna, S.T.; Mukasyan, A.S. Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 2008, 12, 44–50. [Google Scholar] [CrossRef]
- Kingsley, J.J.; Manickam, N.; Patil, K.C. Combustion synthesis and properties of fine particle fluorescent aluminous oxides. Bull. Mater. Sci. 1990, 13, 179–189. [Google Scholar] [CrossRef]
- Kingsley, J.; Patil, K. A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater. Lett. 1988, 6, 427–432. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhou, Y.; Lü, M.; Zhang, A.; Ma, Q. Combustion synthesis of long-persistent luminescent MAl2O4: Eu2+, R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research. Acta Mater. 2007, 55, 2615–2620. [Google Scholar] [CrossRef]
- Raza, M.A.; Rahman, I.Z.; Beloshapkin, S. Synthesis of nanoparticles of La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCM) perovskite by solution combustion method for solid oxide fuel cell application. J. Alloys Compd. 2009, 485, 593–597. [Google Scholar] [CrossRef]
- Bhatkar, V.B.; Bhatkar, N.V. Combustion synthesis and photoluminescence study of silicate biomaterials. Bull. Mater. Sci. 2011, 34, 1281–1284. [Google Scholar] [CrossRef]
- Talwar, G.; Joshi, C.; Moharil, S.; Dhopte, S.; Muthal, P.; Kondawar, V. Combustion synthesis of Sr3MgSi2O8: Eu2+ and Sr2MgSi2O7: Eu2+ phosphors. J. Lumin. 2009, 129, 1239–1241. [Google Scholar] [CrossRef]
- Thoda, O.; Xanthopoulou, G.; Vekinis, G.; Chroneos, A. Review of recent studies on solution combustion synthesis of nanostructured catalysts. Adv. Eng. Mater. 2018, 20, 1800047. [Google Scholar] [CrossRef]
- Carlos, E.; Martins, R.; Fortunato, E.; Branquinho, R. Solution combustion synthesis: Towards a sustainable approach for metal oxides. Chem. Eur. J. 2020, 26, 9099–9125. [Google Scholar] [CrossRef]
- Branquinho, R.; Santa, A.; Carlos, E.; Salgueiro, D.; Barquinha, P.; Martins, R.; Fortunato, E. Developments in Combustion Technology; Kyprianidis, K.G., Skvaril, J., Eds.; InTechOpen: Rijeka, Croatia, 2016; pp. 397–417. [Google Scholar] [CrossRef] [Green Version]
- Kelkar, S.A.; Shaikh, P.A.; Pachfule, P.; Ogale, S.B. Nanostructured Cd2SnO4 as an energy harvesting photoanode for solar water splitting. Energy Environ. Sci. 2012, 5, 5681–5685. [Google Scholar] [CrossRef]
- Wen, W.; Wu, J.-M.; Tu, J.-P. A novel solution combustion synthesis of cobalt oxide nanoparticles as negative-electrode ma-terials for lithium ion batteries. J. Alloys Compd. 2012, 513, 592–596. [Google Scholar] [CrossRef]
- Ekambaram, S.; Patil, K.C. Synthesis and properties of rare earth doped lamp phosphors. Bull. Mater. Sci. 1995, 18, 921–930. [Google Scholar] [CrossRef]
- Amosov, A.P.; Novikov, V.A.; Kachkin, E.M.; Kryukov, N.A.; Titov, A.A.; Sosnin, I.M.; Merson, D.L. The Solution Combustion Synthesis of ZnO Powder for the Photodegradation of Phenol. Ceramics 2022, 5, 928–946. [Google Scholar] [CrossRef]
- Mokkelbost, T.; Kaus, I.; Grande, T.; Einarsrud, M.-A. Combustion synthesis and characterization of nanocrystalline CeO2-based powders. Chem. Mater. 2004, 16, 5489–5494. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, S.; Hua, Z.; Huang, H. Sol-gel auto combustion synthesis of metals and metal alloys. Angew. Chem. Int. Ed. 2009, 48, 8529–8531. [Google Scholar] [CrossRef]
- Bera, P.; Hegde, M. Characterization and catalytic properties of combustion synthesized Au/CeO2 catalyst. Catal. Lett. 2002, 79, 75–81. [Google Scholar] [CrossRef]
- Ianoş, R.; Tăculescu, A.; Păcurariu, C.; Lazău, I. Solution combustion synthesis and characterization of magnetite, Fe3O4, Nanopowders. J. Am. Ceram. Soc. 2012, 95, 2236–2240. [Google Scholar] [CrossRef]
- Voskanyan, A.A.; Chan, K. Solution combustion synthesis using furfuryl alcohol as fuel and a combustible solvent. J. Exp. Nanosci. 2015, 10, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Valefi, M.; Falamaki, C.; Ebadzadeh, T.; Hashjin, M.S. New insights of the glycine-nitrate process for the synthesis of nano-crystalline 8YSZ. J. Am. Ceram. Soc. 2007, 90, 2008–2014. [Google Scholar] [CrossRef]
- Thompson, J.G.; Withers, R.L.; Hyde, B.G. Further consideration of phases in the system Ba2SiO4-Ca2SiO4. J. Am. Ceram. Soc. 1987, 70, C-383–C-386. [Google Scholar] [CrossRef]
- Ianoş, R.; Muntean, E.; Lazău, R.; Băbuță, R.; Moacă, E.-A.; Păcurariu, C.; Dabici, A.; Hulka, I. One-step synthesis of near-infrared reflective brown pigments based on iron-doped lanthanum aluminate, LaAl1-xFexO3. Dye. Pigment. 2018, 152, 105–111. [Google Scholar] [CrossRef]
- Matkovic, B.; Popović, S.; Grzeta, B.; Halle, R. Phases in the system Ba2SiO4-Ca2SiO4. J. Am. Ceram. Soc. 1986, 69, 132–134. [Google Scholar] [CrossRef]
- Yim, S.D.; Kim, S.J.; Baik, A.J.H.; Nam, I.-S.; Mok, Y.S.; Lee, J.-H.; Cho, B.K.; Oh, S.H. Decomposition of urea into NH3 for the SCR process. Ind. Eng. Chem. Res. 2004, 43, 4856–4863. [Google Scholar] [CrossRef]
- Wang, D.; Dong, N.; Hui, S.; Niu, Y. Analysis of urea pyrolysis products in 132.5–190 °C. Energy Procedia 2019, 158, 2170–2175. [Google Scholar] [CrossRef]
- Golja, D.R.; Dejene, F.B.; Kim, J.Y. Trivalent rare-earth-codoped silicate phosphor materials (Ba1.3Ca0.7−x−y SiO4: xDy3+/yEu3+) for solid-state lighting. J. Phys. Condens. Matter 2022, 34, 294006. [Google Scholar] [CrossRef] [PubMed]
- Golja, D.R.; Dejene, F.B.; Kim, J.Y. Single-phase silicate phosphors (Ba1.3Ca0.7−xSiO4:xDy3+) doped with dysprosium for white solid-state lighting. Adv. Condens. Matter Phys. 2022, 2022, 4317275. [Google Scholar] [CrossRef]
- Golja, D.R.; Woldemariam, M.M.; Dejene, F.B.; Kim, J.Y. Photoluminescence processes in τ-phase Ba1.3Ca0.7-x-ySiO4:xDy3+/yTb3+ phosphors for solid-state lighting. R. Soc. Open Sci. 2022, 9, 220101. [Google Scholar] [CrossRef] [PubMed]
- Mukasyan, A.S.; Costello, C.; Sherlock, K.P.; Lafarga, D.; Varma, A. Perovskite Membranes by Aqueous Combustion Synthesis: Synthesis and Properties. Sep. Purif. Technol. 2001, 25, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Wynne, A.M. The thermal decomposition of urea: An undergraduate thermal analysis experiment. J. Chem. Educ. 1987, 64, 180–182. [Google Scholar] [CrossRef]
- Fang, H.L.; DaCosta, H.F. Urea thermolysis and NOx reduction with and without SCR catalysts. Appl. Catal. B Environ. 2003, 46, 17–34. [Google Scholar] [CrossRef]
Metal Nitrate: Urea (Molar Ratios) | |||||
---|---|---|---|---|---|
1:0.75 | 1:1 | 1:1.15 | 1:2 | 1:2.15 | |
β (radian) | 0.00377 | 0.00419 | 0.00461 | 0.00461 | 0.00464 |
t (nm) | 38.1 | 34.3 | 31.2 | 31.2 | 31.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golja, D.R.; Dejene, F.B.; Hussen, M.K.; Kim, J.Y. Combustion Synthesis of Nanocrystalline Ba1.3Ca0.7SiO4 Semiconductors Using Urea as an Energy Efficient Fuel. Inorganics 2023, 11, 48. https://doi.org/10.3390/inorganics11020048
Golja DR, Dejene FB, Hussen MK, Kim JY. Combustion Synthesis of Nanocrystalline Ba1.3Ca0.7SiO4 Semiconductors Using Urea as an Energy Efficient Fuel. Inorganics. 2023; 11(2):48. https://doi.org/10.3390/inorganics11020048
Chicago/Turabian StyleGolja, Desta R., Francis B. Dejene, Megersa K. Hussen, and Jung Yong Kim. 2023. "Combustion Synthesis of Nanocrystalline Ba1.3Ca0.7SiO4 Semiconductors Using Urea as an Energy Efficient Fuel" Inorganics 11, no. 2: 48. https://doi.org/10.3390/inorganics11020048
APA StyleGolja, D. R., Dejene, F. B., Hussen, M. K., & Kim, J. Y. (2023). Combustion Synthesis of Nanocrystalline Ba1.3Ca0.7SiO4 Semiconductors Using Urea as an Energy Efficient Fuel. Inorganics, 11(2), 48. https://doi.org/10.3390/inorganics11020048