One−Step Synthesis of Fe−Based Metal–Organic Framework (MOF) Nanosheet Array as Efficient Cathode for Hybrid Supercapacitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrochemical Performances
2.2. Fabrication of Hybrid Supercapacitor
3. Materials and Methods
3.1. Synthesis of Fe(BPDC) Nanosheet Arrays Cathode
3.2. Fabrication of Fe(BPDC)//AC Hybrid Supercapacitors
3.3. Morphology and Structure Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, X.F.; Li, G.; Tong, Y. A review of negative electrode materials for electrochemical supercapacitors. Sci. China Technol. Sci. 2015, 58, 1799–1808. [Google Scholar] [CrossRef]
- Mustafa, E.S.; Frede, B.; Ariya, S. A Comprehensive Review on Supercapacitor Applications and Developments. Energies 2022, 15, 674. [Google Scholar]
- Wang, H.-Y.; Li, B.; Teng, J.-X.; Zhu, H.-L.; Qi, Y.-X.; Yin, L.-W.; Li, H.; Lun, N.; Bai, Y.-J. N–doped carbon–coated TiN exhibiting excellent electrochemical performance for supercapacitors. Electrochim. Acta 2017, 257, 56–63. [Google Scholar] [CrossRef]
- Li, B.; Pang, H.; Xue, H. Fe–based phosphate nanostructures for supercapacitors. Chin. Chem. Lett. 2020, 32, 885–889. [Google Scholar] [CrossRef]
- Wu, Y.; Ran, F. Vanadium nitride quantum dot/nitrogen–doped microporous carbon nanofibers electrode for high–performance supercapacitors. J. Power Sources 2017, 344, 1–10. [Google Scholar] [CrossRef]
- Nithya, V. A review on holey graphene electrode for supercapacitor. J. Energy Storage 2021, 44, 103380. [Google Scholar] [CrossRef]
- Kumar, R.D.; Nagarani, S.; Sethuraman, V.; Andra, S.; Dhinakaran, V. Investigations of conducting polymers, carbon materials, oxide and sulfide materials for supercapacitor applications: A review. Chem. Pap. 2022, 76, 3371–3385. [Google Scholar] [CrossRef]
- Mani, M.P.; Ponnarasi, K.; Rajendran, A.; Venkatachalam, V.; Thamizharasan, K.; Jothibas, M. Electrochemical Behavior of an Advanced FeCo2O4 Electrode for Supercapacitor Applications. J. Electron. Mater. 2020, 49, 5964–5969. [Google Scholar] [CrossRef]
- Ravikant, A.; Meenakshi, S.; Siddharth, S.; Ashwani, K.; Gaurav, M.; Rabah, B.; Ramesh, C. Metal nitrides as efficient electrode material for supercapacitors: A review. J. Energy Storage 2022, 56, 105912. [Google Scholar]
- Chatterjee, D.P.; Arun, K.N. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A 2021, 9, 15880. [Google Scholar]
- Zan, G.T.; Wu, T.; Zhang, Z.L.; Li, J.; Zhou, J.C.; Zhu, F.; Chen, H.X.; Wen, M.; Yang, X.C.; Peng, X.J.; et al. Bi–oinspired Nanocomposites with Self–Adaptive Stress Dispersion for Super–Foldable Electrodes. Adv. Sci. 2021, 9, 2103714. [Google Scholar] [CrossRef] [PubMed]
- Zan, G.; Wu, T.; Dong, W.; Zhou, J.; Tu, T.; Xu, R.; Chen, Y.; Wang, Y.; Wu, Q. Two–Level Biomimetic Designs Enable Intelligent Stress Dispersion for Super–Foldable C/NiS Nanofiber Free–Standing Electrode. Adv. Fiber Mater. 2022, 4, 1177–1190. [Google Scholar] [CrossRef]
- Rasmita, B.; Nafiseh, M.; Kam, T.L.; Mamata, M. Effect of synthesis parameters on tuning of phase and shape of hierarchical iron oxides and selective application as supercapacitor. Ionics 2019, 25, 1793–1803. [Google Scholar]
- O’keeffe, M.; Yaghi, O.M. Deconstructing the Crystal Structures of Metal–Organic Frameworks and Related Materials into Their Underlying Nets. Chem. Rev. 2011, 112, 675–702. [Google Scholar] [CrossRef]
- Jiao, Y.; Pei, J.; Yan, C.S.; Chen, D.H.; Hu, Y.Y.; Chen, G. Layered nickel metal–organicframework for high performance alkaline battery– supercapacitor hybrid deceives. J. Mater. Chem. A 2019, 4, 13344–13351. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Kaneti, Y.V.; Yamauchi, Y. Metal–Organic Framework–Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano 2017, 11, 5293–5308. [Google Scholar] [CrossRef]
- Ajdari, F.B.; Kowsari, E.; Shahrak, M.N.; Ehsani, A.; Kiaei, Z.; Torkzaban, H.; Ershadi, M.; Eshkalak, S.K.; Haddadi-Asl, V.; Chinnappan, A.; et al. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord. Chem. Rev. 2020, 422, 213441. [Google Scholar] [CrossRef]
- Jana, S.; Ray, A.; Chandra, A.; Fallah, M.S.E.; Das, S.; Sinha, C. Studies on Magnetic and Dielectric Properties of Antiferromagnetically Coupled Dinuclear Cu(II) in a One–Dimensional Cu(II) Coordination Polymer. ACS Omega 2020, 1, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Pettinari, C.; Tombesi, A. MOFs for Electrochemical Energy Conversion and Storage. Inorganics 2023, 11, 65. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Fan, W.; Sun, D. Flexible metal–organic frameworks for gas storage and separation. Dalton Trans. 2022, 51, 4608–4618. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, H.; Mei, H.; Sun, D. Recent progress in metal–organic framework–based supercapacitor electrode materials. Coord. Chem. Rev. 2020, 420, 213438. [Google Scholar] [CrossRef]
- Rajak, R.; Saraf, M.; Mohammad, A.; Mobin, S.M. Design and construction of a ferrocene based inclined polycatenated Co–MOF for supercapacitor and dye adsorption applications. J. Mater. Chem. A 2017, 5, 17998–18011. [Google Scholar] [CrossRef]
- Yan, J.; Liu, T.; Liu, X.D.; Yan, Y.H.; Huang, Y. Metal–organic framework–based materials for flexible supercapacitor application. Coord. Chem. Rev. 2022, 452, 214300. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, C.; Ma, L.; Fu, L.; Li, G.; Hu, Q.; Liu, Q. MOF–derived Fe2O3 decorated with MnO2 nanosheet arrays as anode for high energy density hybrid supercapacitor. Chem. Eng. J. 2021, 417, 129243. [Google Scholar] [CrossRef]
- Ke, F.-S.; Wu, Y.-S.; Deng, H. Metal–organic frameworks for lithium ion batteries and supercapacitors. J. Solid. State Chem. 2015, 223, 109–121. [Google Scholar] [CrossRef]
- Xia, W.; Qu, C.; Liang, Z.; Zhao, B.; Dai, S.; Qiu, B.; Jiao, Y.; Zhang, Q.; Huang, X.; Guo, W.; et al. High–Performance Energy Storage and Conversion Materials Derived from a Single Metal–Organic Framework/Graphene Aerogel Composite. Nano Lett. 2017, 17, 2788–2795. [Google Scholar] [CrossRef]
- Li, M.C.; Wang, W.X.; Yang, M.Y.; Lv, F.C.; Cao, L.J.; Tang, Y.G.; Sun, R.; Lu, Z.G. Large–scale fabrication of porous carbon–decorated iron oxide microcuboids from Fe–MOF as high–performance anode materials for lithium–ion batteries. RSC Adv. 2015, 5, 7356–7362. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Q.; Guo, X.; Zhang, S.; Li, W.; Pang, H. Metal organic frameworks and their composites for supercapacitor application. J. Energy Storage 2022, 56, 105819. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, D.; Chu, L.; Wang, J. Enhancement of ionizing radiation–induced catalytic degradation of antibiotics using Fe/C nanomaterials derived from Fe–based MOFs. J. Hazard. Mater. 2020, 389, 122148. [Google Scholar] [CrossRef]
- Raza, N.; Kumar, T.; Singh, V.; Kiml, K.H. Recent advances in bimetallic metal–organic framework as a potentialcandidate for supercapacitor electrode material. Coord. Chem. Rev. 2021, 430, 213660. [Google Scholar] [CrossRef]
- Lee, D.Y.; Yoon, S.J.; Shrestha, N.K.; Lee, S.-H.; Ahn, H.; Han, S.-H. Unusual energy storage and charge retention in Co–based metal–organic–frameworks. Microporous Mesoporous Mater. 2012, 153, 163–165. [Google Scholar] [CrossRef]
- Yang, J.; Xiong, P.; Zheng, C.; Qiu, H.; Wei, M. Metal–organic frameworks: A new promising class of materials for a high performance supercapacitor electrode. J. Mater. Chem. A 2014, 2, 16640–16644. [Google Scholar] [CrossRef]
- Lin, X.; Lai, S.; Fang, G.; Li, X. Nickel(II) Cluster–Based Pillar–Layered Metal–Organic Frameworks for High–Performance Supercapacitors. Inorg. Chem. 2022, 61, 17278–17288. [Google Scholar] [CrossRef]
- Zheng, D.; Wen, H.; Sun, X.; Guan, X.; Zhang, J.; Tian, W.; Feng, H.; Wang, H.; Yao, Y. Ultrathin Mn Doped Ni–MOF Nanosheet Array for Highly Capacitive and Stable Asymmetric Supercapacitor. Chem. A Eur. J. 2020, 26, 17149–17155. [Google Scholar] [CrossRef]
- Gong, Y.; Li, J.; Jiang, P.G.; Li, Q.F.; Lin, J.H. Novel metal(II) coordination polymers based on N,N′–bis–(4–pyridyl)phthalamide as supercapacitor electrode materials in an aqueous electrolyte. Dalton T. 2013, 5, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zheng, C.; Xiong, P.; Li, Y.; Wei, M. Zn–doped Ni–MOF material with a high supercapacitive performance. J. Mater. Chem. A 2014, 2, 19005–19010. [Google Scholar] [CrossRef]
- Li, Z.H.; Tan, M.J.; Zheng, Y.H.; Luo, Y.Y.; Jing, Q.S.; Jiang, J.K.; Li, M.J. Application of Conductive Metal Organic Frameworks in Supercapacitors. J. Inorg. Mater. 2020, 7, 770–780. [Google Scholar]
- Hangarter, C.M.; Dyatkin, B.; Laskoski, M.; Palenik, M.C.; Miller, J.B.; Klug, C.A. A Combined Theoretical and Experimental Characterization of a Zirconium MOF with Potential Application to Supercapacitors. Appl. Magn. Reson. 2022, 53, 915–930. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, C.; Liu, Y.; Li, D.; Chen, W.; Ma, Y.; Wang, C.; Zhang, J. Electrochemical performance and transformation of Co–MOF/reduced graphene oxide composite. Mater. Lett. 2017, 193, 216–219. [Google Scholar] [CrossRef]
- Campagnol, N.; Romero-Vara, R.; Deleu, W. A hybrid supercapacitor based on porous carbon and the metal–organic frame–work MIL–100(Fe). ChemElectroChem 2014, 1, 1182–1188. [Google Scholar] [CrossRef]
- Wang, K.B.; Wang, Z.K.; Wang, X.; Zhou, X.Q.; Tao, Y.H.; Wu, H. Flexible long–chain–linker constructed Ni–based metal–organic frameworks with 1D helical channel and their pseudo–capacitor behavior studies. J. Power Sources 2018, 377, 44–51. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Kaneti, Y.V.; Kim, J.; Kim, J.H.; Yamauchi, Y. Nanoarchitectures for metal–organic framework–derived na–noporous carbons toward supercapacitor applications. Acc. Chem. Res. 2016, 12, 2796–2806. [Google Scholar]
- Anaraki, M.A.; Safarifard, A. Fe3O4@MOFs magnetic nanocomposites: Synthesis and applications. Eur. J. Inorg. Chem. 2020, 20, 1916–1937. [Google Scholar] [CrossRef]
- Thakur, B.; Karve, V.V.; Sun, D.T.; Semrau, A.L.; Weiß, L.J.K.; Grob, L.; Fischer, R.A.; Queen, W.L.; Wolfrum, B. An Investi–gation into the Intrinsic Peroxidase–Like Activity of Fe–MOFs and Fe–MOFs/Polymer Composites. Adv. Mater. Technol. 2021, 6, 2001048. [Google Scholar] [CrossRef]
- Bi, S.; Banda, H.; Chen, M.; Niu, L.; Wu, T.; Wang, J.; Wang, R.; Feng, J.; Chen, T.; Dincă, M.; et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater. 2020, 19, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.y.; Zhang, X.y.; Wei, L.; Guo, X. MOF–derived porous hollow α–Fe2O3 microboxes modified by silver nanoclusters for enhanced pseudocapacitive storage. Appl. Surf. Sci. 2019, 463, 616–625. [Google Scholar] [CrossRef]
- Sui, Y.; Zhang, D.; Han, Y.; Sun, Z.; Qi, J.; Wei, F.; He, Y.; Meng, Q. Effects of Carbonization Temperature on Nature of Nanostructured Electrode Materials Derived from Fe–MOF for Supercapacitors. Electron. Mater. Lett. 2018, 14, 548–555. [Google Scholar] [CrossRef]
- Bara, D.; Wilson, C.; Mörtel, M.; Khusniyarov, M.M.; Ling, S.L.; Slater, B.; Sproules, S.; Forgan, R.S. Kinetic Control of Inter–penetration in Fe–Biphenyl–4,4#–Dicarboxylate Metal–Organic Frameworks by Coordination and Oxidation Modulation. JACS 2019, 20, 8346–8357. [Google Scholar]
- Pan, L.; Nancy, C.; Huang, X.J.; Li, J. Reactions and Reactivity of Co–bpdc Coordination Polymers (bpdc) 4,4–biphenyldicarboxylate). Inorg. Chem. 2000, 39, 5333–5340. [Google Scholar] [CrossRef]
- Wang, S.E.; Wang, S.S.; Guo, X.; Wang, Z.K.; Mao, F.F.; Su, L.H.; Wu, H.; Wang, K.B.; Zhang, Q.C. An asymmetric superca–pacitor with an interpenetrating crystalline Fe–MOF as the positive electrode and its congenetic derivative as the negative electrode. Inorg. Chem. Front. 2021, 8, 4878. [Google Scholar]
- Jiang, S.; Li, S.; Xu, Y.; Liu, Z.; Weng, S.; Lin, M.; Xu, Y.; Jiao, Y.; Chen, J. An iron based organic framework coated with nickel hydroxide for energy storage, conversion and detection. J. Colloid. Interface Sci. 2021, 600, 150–160. [Google Scholar] [CrossRef]
- Kavian, S.; Hajati, S.; Moradi, M. High–rate supercapacitor based on NiCo–MOF–derived porous NiCoP for efficient energy storage. J. Mater. Sci. Mater. Electron. 2021, 32, 13117–13128. [Google Scholar] [CrossRef]
- Le, K.; Gao, M.J.; Liu, W.; Liu, J.R.; Wang, Z.; Wang, F.L.; Murugadoss, V.; Wu, S.D.; Ding, T.; Guo, Z.H. MOF–derived hier–archical core–shell hollow iron–cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors. Electrochim. Acta 2019, 323, 134826. [Google Scholar] [CrossRef]
- Lee, C.S.; Moon, J.Y.; Park, J.T.; Kim, J.H. Highly Interconnected Nanorods and Nanosheets Based on a Hierarchically Layered Metal Organic Framework for a flexible, high–performance energy storage device. ACS Sustain. Chem. Eng. 2020, 9, 3773–3785. [Google Scholar] [CrossRef]
- Pan, Y.; Shi, C.J.; Chen, Y.J.; Li, D.; Tian, Z.; Guo, L.; Wang, Y.Z. Fishbone–like Ni3S2/Co3S4 integrated with nickel MOF nanosheets for hybrid supercapacitors. Appl. Surf. Sci. 2021, 566, 150744. [Google Scholar] [CrossRef]
- Zhao, C.; Ding, Y.; Zhu, Z.; Han, S.; Zhao, C.; Chen, G. One–pot construction of highly oriented Co–MOF nanoneedle arrays on Co foam for high–performance supercapacitor. Nanotechnology 2021, 32, 395606. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Faisal, M.M.; Ali, S.R.; Fari, R.; Afzal, A.M. Co–MOF/polyaniline–based electrode material for high performance asymmetric supercapacitor devices. Electrochim. Acta 2020, 346, 136039. [Google Scholar] [CrossRef]
- Alitabar, K.; Zardkhoshoui, A.M.; Davarani, S.S.H. One–step synthesis of porous Ni–Co–Fe–S nanosheet arrays as an efficient battery–type electrode material for hybrid supercapacitors. Batter. Supercaps 2020, 3, 1311–1320. [Google Scholar] [CrossRef]
- Wang, B.L.; Li, W.; Liu, Z.L.; Duan, Y.J.; Zhao, B.; Wang, Y.; Liu, J.H. Incorporating Ni–MOF structure with polypyrrole: En–hanced capacitive behavior as electrode material for supercapacitor. RSC Adv. 2020, 10, 12129. [Google Scholar] [CrossRef]
HSC | Voltage Range (V) | Energy Density (Wh/kg) | Power Density (W/kg) | Number of Cycles | Capacitance Retention (%) | Year [Reference] |
---|---|---|---|---|---|---|
Fe–ASC | 0–1.7 | 22 | 12,000 | 6000 | 90.6 | 2021 [50] |
Fe– MOF@Ni(OH)2–20/NF//AC/NF | 0–1.6 | 67.1 | 800 | 4000 | 100 | 2021 [51] |
NiCoP//AC | 0–1.6 | 58.8 | 781.3 | 10,000 | 96.2 | 2021 [52] |
Fe–Co–S/NF //rGO | 0–1.6 | 43.6 | 770 | 5000 | 89.6 | 2019 [53] |
Ni–MOF@NCS/NF//AC | 0–1.7 | 58.8 | 363.7 | 10,000 | 96.2 | 2021 [55] |
AC//Co–MOF@Co | 0–1.7 | 43.4 | 145.1 | 10,000 | 87.5 | 2021 [56] |
AC//MOF/PANI | 0–1.6 | 23.11 | 600 | 3000 | 146 | 2020 [57] |
NFCS–NS//AC | 0–1.6 | 57.3 | 807.04 | 10,000 | 90.8 | 2020 [58] |
Ni–MOF–ppy//AC | 0–1.5 | 40.1 | 1500.6 | 10,000 | 80 | 2020 [59] |
Fe(BPDC)//AC | 0–1.9 | 45.64 99.85 | 4919.55 835.1 | 10,000 | 86.41 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Yang, L.; Li, R.; Zhou, Y. One−Step Synthesis of Fe−Based Metal–Organic Framework (MOF) Nanosheet Array as Efficient Cathode for Hybrid Supercapacitors. Inorganics 2023, 11, 169. https://doi.org/10.3390/inorganics11040169
Zhao J, Yang L, Li R, Zhou Y. One−Step Synthesis of Fe−Based Metal–Organic Framework (MOF) Nanosheet Array as Efficient Cathode for Hybrid Supercapacitors. Inorganics. 2023; 11(4):169. https://doi.org/10.3390/inorganics11040169
Chicago/Turabian StyleZhao, Jicheng, Liu Yang, Ruizhi Li, and Yingke Zhou. 2023. "One−Step Synthesis of Fe−Based Metal–Organic Framework (MOF) Nanosheet Array as Efficient Cathode for Hybrid Supercapacitors" Inorganics 11, no. 4: 169. https://doi.org/10.3390/inorganics11040169
APA StyleZhao, J., Yang, L., Li, R., & Zhou, Y. (2023). One−Step Synthesis of Fe−Based Metal–Organic Framework (MOF) Nanosheet Array as Efficient Cathode for Hybrid Supercapacitors. Inorganics, 11(4), 169. https://doi.org/10.3390/inorganics11040169