Methods for Obtaining Phosphorus-Containing Fertilizers Based on Industrial Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumental Research Methods
- -
- absorption spectra with wavelengths of 1800–1600 (1705.07 and 1597.06) inherent in the presence of silicate substances fit Si-O-Si and Si-O-C chemical bonds in cottrel dust, as well as in the range of 1100–950 (1026.13 and 1002.98) are inherent in the phosphorus compounds;
- -
- intense fluctuations in the range of 910.40, which are inherent in the phosphorus-containing compounds by the P-F group;
- -
- less intense fluctuations in the range of 821.68–694.37, which are inherent in the phosphorus-containing substances by the P = S group;
- -
- spectra in this interval (644.22–559.36) are inherent in the compounds Al3+, Fe3+, Mg2+, Fe+2 in the valence state Si-O-Al, Si-O-Fe, and Si-O.
2.2. Methodology of the Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duisembiev, R.N.; Imanbetov, K.M.; Kydyralieva, A.D. Characteristics and Methods of Utilization of Cottrel Milk NDFZ. Sci. Work. M. Auezov SKSU 2018, 45, 55–59. [Google Scholar]
- Lv, L.; Zheng, D.; Tang, S.; Zhang, T.; Liu, W. Phosphate ore Particles Dissolution Kinetics in Hydrochloric Acid Based on a Structure-Related Segmented Model. Powder Technol. 2021, 392, 141–149. [Google Scholar] [CrossRef]
- Sevim, F.; Sarac, H.; Kocakerim, M.M.; Yartasi, A. Dissolution Kinetics of Phosphate Ore in H2SO4 Solutions. Ind. Eng. Chem. Res. 2003, 42, 2052–2057. [Google Scholar] [CrossRef]
- Smailov, B.M.; Tleuov, A.S.; Beisenbayev, O.K.; Tleuova, S.T.; Yeskendirova, M.M.; Userbaeva, B.A. Multifunctional Sorbents Based on Jefractory Clays for Chemical Industry Wastewater Treatment. Rasayan J. Chem. 2022, 15, 1085–1090. [Google Scholar]
- Nazarbek, U.; Abdurazova, P.; Raiymbekov, Y. Extraction and Characterization of Humic Acid Based on Coal Mining Waste. Chem. Eng. Technol. 2022, 45, 1133–1140. [Google Scholar] [CrossRef]
- Karataev, S.S.; Kholoshenko, L.K.; Batkaev, L.V.; Beisenbayev, O.K. Method of Obtaining Organomineral Fertilizer. Committee on Intellectual Property Rights of the Ministry of Justice of the Republic of. Kazakhstan. Patent RK No. 30648, 15 December 2015. [Google Scholar]
- Smailov, B.M.; Beisenbayev, O.K.; Tleuov, A.S. Method for Obtaining Phosphorus-Containing Fertilizers. Committee on Intellectual Property Rights of the Ministry of Justice of the Republic of Kazakhstan. Patent RK No. 4380, 23 November 2019. [Google Scholar]
- Dorozhkin, S.V. Fundamentals of the Wet-Process Phosphoric Acid Production. Kinetics and Mechanism of CaSO4·0.5H2O Surface Crystallization and Coating Formation. Ind. Eng. Chem. Res. 1997, 36, 467–473. [Google Scholar] [CrossRef]
- Smailov, B.M.; Beisenbayev, O.K.; Tleuov, A.S. Method for Obtaining Phosphorus-Containing Fertilizers. Committee on Intellectual Property Rights of the Ministry of Justice of the Republic of Kazakhstan. Patent PK No. 4122, 25 June 2019. [Google Scholar]
- Adil, Z.; Moldabekov, S.M.; Sholak, A.; Nurlybayeva, A. Processing of Cottrel Milk for Phosphorous Potassium Fertilizers. Jaqiellonian Univ. Int. Indep. Sci. J. 2020, 14, 25–30. [Google Scholar]
- Nazarbek, U.; Abdurazova, P.; Nazarbekova, S.; Raiymbekov, Y.; Kambatyrov, M. Processing of Phosphoric Solid Waste by Humic Acid Leaching Method. Inorganics 2023, 11, 90. [Google Scholar] [CrossRef]
- Jing, J.; Zhang, S.; Yuan, L.; Li, Y.; Lin, Z.; Xiong, Q.; Zhao, B. Combining Humic Acid with Phosphate Fertilizer Affects Humic Acid Structure and its Stimulating Efficacy on the Growth and Nutrient Uptake of Maize Seedlings. Sci. Rep. 2020, 10, 17502. [Google Scholar] [CrossRef]
- ISO 7497:1984; Fertilizers—Extraction of Phosphates Soluble in Mineral Acids: ISO/TC 134: Fertilizers, Soil Conditioners and Beneficial Substances. International Organization for Standardization: Geneva, Switzerland, 1984.
- Beisenbayev, O.K.; Tleuov, A.S.; Smailov, B.M.; Zakirov, B.S. Physical and chemical researches of raw material for receipt of phosphororus-containing microfertilizer. Bull. Kazakh–Br. Univ. 2019, 4, 26–32. [Google Scholar]
- Imanbetov, K.M.; Kerembayev, A.B.; Koshkarbaeva, S.T. Improvement of the Technology of Processing Cottrel Milk into PK Fertilizer. Bull. Sci. South Kazakhstan 2018, 1, 70–74. [Google Scholar]
- Smailov, B.M.; Zharkinbekov, M.A.; Tuleshova, K.T.; Issabayev, N.N.; Tleuov, A.S.; Beisenbayev, O.K.; Esirkepova, M.M.; Azimov, A.M. Kinetic Research and Mathematical Planning on the Obtaining of Potassium Humate from Brown Coal of the Lenger Deposit. Rasayan J. Chem. 2021, 14, 1899–1905. [Google Scholar] [CrossRef]
- Nazarbek, U.; Besterekov, U.; Abdurazova, P.; Nazarbekova, S.; Raiymbekov, Y. Comprehensive Study of the Physical and Chemical Properties of Phosphorus Sludge and Cottrell Dust. Period. Polytech. Chem. Eng. 2021, 65, 454–461. [Google Scholar] [CrossRef]
- Litvinova, T.V. Composition, Morphology, and Origin of Phosphate Pellets: Evidence from Phosphorites of the Lesser Karatau. Lithol. Miner. Resour. 2007, 42, 384–399. [Google Scholar] [CrossRef]
- Kydyralyeva, A.S.; Beisenbayev, O.K.; Ortaev, A.E.; Smailov, B.M.; Nadyrov, K.S.; Issa, A.B.; Ibadullaev, A.S. Technology for the Production of Composite Polymer Materials Based on Recycled Polypropylene and Polyethylene Tterephthalate with the Addition of Modified Sodium Montmorillonite. Rasayan J. Chem. 2023, 15, 319–324. [Google Scholar] [CrossRef]
- Roine, A. Outokumpu HSC Chemistry for Windows: Chemical Reaction and Eguilibrium Loftware with Extensive Thermochemical Datebase; Outokumpu Resaerch OY: Pori, Finland, 2020. [Google Scholar]
- Beysenbayev, O.K.; Umirzakov, S.I.; Tleuov, A.S.; Smailov, B.M.; Issa, A.B.; Dzhamantikov, K.; Zakirov, B.S. Obtaining and Research of Physical and Chemical Properties of Chelated Polymer-containing Microfertilizers on the Basis of Technogenic Waste for Rice Seed Biofortification. News Sci. Repub. Kazakhstan 2019, 1, 80–89. [Google Scholar]
- Zhantasov, K.T.; Lavrov, B.A.; Zhantasova, D.M.; Ismailov, B.A.; Zhumadilova, Z.T. The Development of a Mini Workshop of Obtaining Mixed Fertilizers new Range Based on “ZHAMB-70”. News Natl. Acad. Sci. Repub. Kazakhstan Ser. Geol. Tech. Sci. 2019, 1, 255–261. [Google Scholar]
- Ismailov, B.; Zhantasov, K.; Zhantasov, M.; Shapalov, S. Optimization of the Process of Reducing the Environmental Load and Improving the Living Conditions in the Production of Fertilizer Mixtures. ARPN J. Eng. Appl. Sci. 2022, 17, 436–444. [Google Scholar]
- Beysenbayev, O.K.; Ahmedov, U.K.; Issa, A.B.; Smailov, B.M.; Esirkepova, M.M.; Artykova, Z.K. Receiving and Research of the Mechanism of Capsulation of Superphosphate and Double Superphosphate for Giving of Strength Properties. News Natl. Acad. Sci. Repub. Kazakhstan 2019, 438, 36–45. [Google Scholar] [CrossRef]
- Abzhalov, R.; Sataev, M.; Koshkarbayeva, S.; Sagitova, G.; Smailov, B.; Azimov, A.; Serikbaeva, B.; Kolesnikova, O.; Fediuk, R.; Amran, M. Studies of the Application of Electrically Conductive Composite Copper Films to Cotton Fabrics. J. Compos. Sci. 2022, 6, 349. [Google Scholar] [CrossRef]
- Smailov, B.M.; Kydyralyeva, A.S.; Beisenbayev, O.K.; Issabayev, N.N.; Azimov, A.M.; Issa, A.B.; Assanova, A.R. Study of Modification of Sodium Montmorillonite from the Darbazinsk Deposit. Rasayan J. Chem. 2022, 15, 1787–1791. [Google Scholar] [CrossRef]
- Smailov, B.M.; Aravind, U.K.; Zakirov, B.S.; Azimov, A.M.; Tleuov, A.S.; Beisenbayev, O.K.; Aimenov, Z.T.; Issabayev, N.N. Technology for Obtaining Chelated Organomineral Microfertilizers Based on Humate-containing Components. Rasayan J. Chem. 2023, 16, 428–433. [Google Scholar] [CrossRef]
- Smailov, B.M.; Zakirov, B.S.; Beisenbayev, O.K.; Tleuov, A.S.; Issa, A.B.; Azimov, A.M. Thermodynamic-kinetic Research and Mathematical Planning on the Obtaining of Phosphorus-containing Components Based on Cottrel Dust from Phosphorus Production Waste. Rasayan J. Chem. 2022, 15, 2274–2279. [Google Scholar] [CrossRef]
Composition | Share,% | Oxides | Converted to Oxides, % | Composition | Share, % | Oxides | Converted to Oxides, % |
---|---|---|---|---|---|---|---|
O | 42.1 | - | - | K | 5.91 | K2O | 7.12 |
Na | 0.84 | Na2O | 1.13 | Ca | 6.35 | CaO | 8.89 |
Mg | 0.91 | MgO | 1.51 | Fe | 0.58 | Fe2O3 | 0.82 |
Al | 1.05 | Al2O3 | 1.98 | Zn | 0.55 | ZnO | 0.68 |
Si | 7.31 | SiO2 | 15.6 | C | 17.6 | CO2 | - |
P | 13.4 | P2O5 | 30.7 | F | 2.99 | - | - |
Temperature, K | ∆H, kJ/Mole | ∆S, J/(mol·K) | ∆G, kJ/Mole |
---|---|---|---|
333 | −399,29 | −321,2 | −292,28 |
338 343 | −401,25 −403,19 | −327,0 −332,7 | −290,66 −289,01 |
348 | −405,09 | −338,2 | −287,33 |
353 | −406,96 | −343,5 | −285,63 |
358 | −408,80 | −348,7 | −283,89 |
363 | −410,61 | −353,7 | −282,14 |
α | 1 −α | (1 − α)1/3 | 1 − (1 − α)1/3 | , min | |
---|---|---|---|---|---|
T = 333 K | |||||
0.510 | 0.490 | 0.788 | 0.222 | 60 | 7.745 |
0.601 | 0.399 | 0.736 | 0.264 | 80 | 8.944 |
0.654 | 0.346 | 0.702 | 0.298 | 100 | 10.00 |
0.702 | 0.298 | 0.667 | 0.333 | 120 | 10.95 |
T = 343 K | |||||
0.622 | 0.378 | 0.723 | 0.277 | 60 | 7.745 |
0.683 | 0.317 | 0.681 | 0.319 | 80 | 8.944 |
0.701 | 0.299 | 0.659 | 0.341 | 100 | 10.00 |
0.733 | 0.267 | 0.643 | 0.367 | 120 | 10.95 |
T = 353 K | |||||
0.655 | 0.345 | 0.701 | 0.299 | 60 | 7.745 |
0.702 | 0.298 | 0.667 | 0.333 | 80 | 8.944 |
0.723 | 0.277 | 0.645 | 0.355 | 100 | 10.00 |
0.748 | 0.252 | 0.621 | 0.379 | 120 | 10.95 |
T = 363 K | |||||
0.705 | 0.295 | 0.665 | 0.335 | 60 | 7.745 |
0.762 | 0.238 | 0.619 | 0.381 | 80 | 8.944 |
0.783 | 0.217 | 0.600 | 0.400 | 100 | 10.00 |
0.804 | 0.196 | 0.580 | 0.420 | 120 | 10.95 |
Constant Speeds | Numerical Value K | lnK | Temperature, K | 1/T |
---|---|---|---|---|
tgᵩ1 = K1 | 0.0295 | −1.530 | 333 | 0.0030 |
tgᵩ2 = K2 | 0.0355 | −1.449 | 343 | 0.0029 |
tgᵩ3 = K3 | 0.0365 | −1.436 | 353 | 0.0028 |
tgᵩ4 = K4 | 0.0401 | −1.396 | 363 | 0.0027 |
Compounds | P2O5 (Total) | P2O5 (Assimilable) | P2O5 (Water Solubility) | P | Ca | Mg | Fe | Al | S |
---|---|---|---|---|---|---|---|---|---|
Mono-calcium phosphate,% | 25.42 | 22.43 | 2.99 | 11.1 | 7.98 | 0.04 | 0.6 | 0.25 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismailov, B.; Zakirov, B.; Kadirbayeva, A.; Koshkarbayeva, S.; Smailov, B.; Azimov, A.; Issabayev, N. Methods for Obtaining Phosphorus-Containing Fertilizers Based on Industrial Waste. Inorganics 2023, 11, 224. https://doi.org/10.3390/inorganics11060224
Ismailov B, Zakirov B, Kadirbayeva A, Koshkarbayeva S, Smailov B, Azimov A, Issabayev N. Methods for Obtaining Phosphorus-Containing Fertilizers Based on Industrial Waste. Inorganics. 2023; 11(6):224. https://doi.org/10.3390/inorganics11060224
Chicago/Turabian StyleIsmailov, Bakhytzhan, Bakhtiyar Zakirov, Almagul Kadirbayeva, Shaizada Koshkarbayeva, Bakyt Smailov, Abdugani Azimov, and Nurpeis Issabayev. 2023. "Methods for Obtaining Phosphorus-Containing Fertilizers Based on Industrial Waste" Inorganics 11, no. 6: 224. https://doi.org/10.3390/inorganics11060224
APA StyleIsmailov, B., Zakirov, B., Kadirbayeva, A., Koshkarbayeva, S., Smailov, B., Azimov, A., & Issabayev, N. (2023). Methods for Obtaining Phosphorus-Containing Fertilizers Based on Industrial Waste. Inorganics, 11(6), 224. https://doi.org/10.3390/inorganics11060224