Light Inorganic Scintillation Materials for Neutron and Charge Particle Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photoluminescence Study of Eu-Doped Scintillator Li2CaSiO4 and Possibilities for Light Yield Enhacement
2.2. Evaluation of Various Scintillators for Charged Particles Detection
3. Materials and Methods
3.1. Samples Synthesis
3.2. Photoluminescence Measurements
3.3. Modeling and Simulation Procedure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lecoq, P.; Gektin, A.; Korzhik, M. Inorganic Scintillators for Detector Systems; Particle Acceleration and Detection; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Wang, Z.; Dujardin, C.; Freeman, M.S.; Gehring, A.E.; Hunter, J.F.; Lecoq, P.; Liu, W.; Melcher, C.L.; Morris, C.L.; Nikl, M.; et al. Needs, Trends, and Advances in Scintillators for Radiographic Imaging and Tomography. arXiv 2022, arXiv:2212.10322. [Google Scholar] [CrossRef]
- Ericsson, G. Advanced Neutron Spectroscopy in Fusion Research. J. Fusion EnergY 2019, 38, 330–355. [Google Scholar] [CrossRef] [Green Version]
- Murray, R.B. Use of 6LiI(Eu) as a Scintillation Detector and Spectrometer for Fast Neutrons. Nucl. Instrum. 1958, 2, 237–248. [Google Scholar] [CrossRef]
- Knitel, M.J.; Dorenbos, P.; de Haas, J.T.M.; van Eijk, C.W.E. LiBaF3, a Thermal Neutron Scintillator with Optimal n-γ Discrimination. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1996, 374, 197–201. [Google Scholar] [CrossRef]
- van Eijk, C.W.E.; Bessière, A.; Dorenbos, P. Inorganic Thermal-Neutron Scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 529, 260–267. [Google Scholar] [CrossRef]
- Knoll, G.F. Radiation Detection and Measurement, 4th ed.; John Wiley & Sons: New York, NY, USA, 2010. [Google Scholar]
- Fadil, M.; Blandin, C.; Christophe, S.; Déruelle, O.; Fioni, G.; Marie, F.; Mounier, C.; Ridikas, D.; Trapp, J.P. Development of Fission Micro-Chambers for Nuclear Waste Incineration Studies. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2002, 476, 313–317. [Google Scholar] [CrossRef]
- Galli, G.; Hamrita, H.; Kirkpatrick, M.J.; Odic, E.; Jammes, C. A New Discriminating High Temperature Fission Chamber Filled with Xenon Designed for Sodium-Cooled Fast Reactors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 968, 163947. [Google Scholar] [CrossRef]
- Emrich, W. Chapter 5—Basic Nuclear Structure and Processes. In Principles of Nuclear Rocket Propulsion; Emrich, W., Ed.; Butterworth-Heinemann: Oxford, UK, 2016; pp. 55–80. [Google Scholar] [CrossRef]
- Zhou, C.; Melton, A.G.; Burgett, E.; Hertel, N.; Ferguson, I.T. Neutron Detection Performance of Gallium Nitride Based Semiconductors. Sci. Rep. 2019, 9, 17551. [Google Scholar] [CrossRef] [Green Version]
- CINDRO, N. A Survey of Fast-Neutron Reactions. Rev. Mod. Phys. 1966, 38, 391–446. [Google Scholar] [CrossRef]
- NNDC|National Nuclear Data Center. Available online: https://www.nndc.bnl.gov/ (accessed on 14 February 2023).
- Taggart, M.; Nakohostin, M.; Sellin, P. Investigation into the potential of GAGG:Ce as a neutron detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 931, 121–126. [Google Scholar] [CrossRef]
- Reeder, P.L. Neutron detection using GSO scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1994, 340, 371–378. [Google Scholar] [CrossRef]
- Reeder, P.L. Thin GSO scintillator for neutron detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1994, 353, 134–136. [Google Scholar] [CrossRef] [Green Version]
- Combes, C.M.; Dorenbos, P.; van Eijk, C.W.E.; Krämer, K.W.; Güdel, H.U. Optical and Scintillation Properties of Pure and Ce3+-Doped Cs2LiYCl6 and Li3YCl6:Ce3+ Crystals. J. Lumin. 1999, 82, 299–305. [Google Scholar] [CrossRef]
- van Loef, E.V.D.; Dorenbos, P.; van Eijk, C.W.E.; Krämer, K.W.; Güdel, H.U. Scintillation and Spectroscopy of the Pure and Ce3+-Doped Elpasolites: Cs2LiYX6 (X = Cl, Br). J. Phys. Condens. Matter 2002, 14, 8481. [Google Scholar] [CrossRef]
- Pierron, L.; Kahn-Harari, A.; Viana, B.; Dorenbos, P.; van Eijk, C.W.E. X-Ray Excited Luminescence of Ce:Li2CaSiO4, Ce:CaBPO5 and Ce:LiCaPO4. J. Phys. Chem. Solids 2003, 64, 1743–1747. [Google Scholar] [CrossRef]
- Pejchal, J.; Fujimoto, Y.; Chani, V.; Moretti, F.; Yanagida, T.; Nikl, M.; Yokota, Y.; Beitlerova, A.; Vedda, A.; Yoshikawa, A. Crystal Growth and Luminescence Properties of Ti-Doped LiAlO2 for Neutron Scintillator. J. Cryst. Growth 2011, 318, 828–832. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Kamada, K.; Yanagida, T.; Kawaguchi, N.; Kurosawa, S.; Totsuka, D.; Fukuda, K.; Watanabe, K.; Yamazaki, A.; Yokota, Y.; et al. Lithium Aluminate Crystals as Scintillator for Thermal Neutron Detection. IEEE Trans. Nucl. Sci. 2012, 59, 2252–2255. [Google Scholar] [CrossRef]
- Dickens, P.T.; Marcial, J.; McCloy, J.; McDonald, B.S.; Lynn, K.G. Spectroscopic and Neutron Detection Properties of Rare Earth and Titanium Doped LiAlO2 Single Crystals. J. Lumin. 2017, 190, 242–248. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Koshimizu, M.; Kawano, N.; Okada, G.; Kawaguchi, N. Comparative Studies of Optical and Scintillation Properties between LiGaO2 and LiAlO2 Crystals. J. Phys. Soc. Jpn. 2017, 86, 094201. [Google Scholar] [CrossRef]
- Thoř, T.; Rubešová, K.; Jakeš, V.; Kučerková, R.; Pejchal, J.; Nikl, M. Titanium-Doped LiAlO2 Ceramics for Neutron Scintillation. J. Phys. Conf. Ser. 2022, 2413, 012015. [Google Scholar] [CrossRef]
- Takizawa, Y.; Kamada, K.; Yoshino, M.; Yajima, R.; Kim, K.J.; Kochurikhin, V.V.; Yoshikawa, A. Growth of 6Li-Enriched LiCl/BaCl2 Eutectic as a Novel Neutron Scintillator. Jpn. J. Appl. Phys. 2022, 61, SC1038. [Google Scholar] [CrossRef]
- Havlíček, J.; Rubešová, K.; Jakeš, V.; Kučerková, R.; Beitlerová, A.; Nikl, M. Basic Study of Ceramic Lithium Strontium Borates as Thermal Neutron Scintillators. J. Am. Ceram. Soc. 2022, 105, 4039–4045. [Google Scholar] [CrossRef]
- Jakeš, V.; Havlíček, J.; Průša, F.; Kučerková, R.; Nikl, M.; Rubešová, K. Translucent LiSr4(BO3)3 Ceramics Prepared by Spark Plasma Sintering. Ceram. Int. 2022, 48, 15785–15790. [Google Scholar] [CrossRef]
- Kutsuzawa, N.; Takizawa, Y.; Kamada, K.; Yoshino, M.; Kim, K.J.; Murakami, R.; Shoji, Y.; Kochurikhin, V.V.; Yoshikawa, A. Growth and Scintillation Properties of Eu-Doped LiCl/Li2SrCl4 Eutectic Scintillator for Neutron Detection. J. Cryst. Growth 2021, 576, 126373. [Google Scholar] [CrossRef]
- Sasaki, R.; Kamada, K.; Kim, K.J.; Yajima, R.; Yoshino, M.; Kutsuzawa, N.; Murakami, R.; Horiai, T.; Yoshikawa, A. Fabrication of CeCl3/LiCl/CaCl2 Ternary Eutectic Scintillator for Thermal Neutron Detection. Crystals 2022, 12, 1760. [Google Scholar] [CrossRef]
- Komendo, I.; Mechinsky, V.; Fedorov, A.; Dosovitskiy, G.; Schukin, V.; Kuznetsova, D.; Zykova, M.; Velikodny, Y.; Korjik, M. Effect of the Synthesis Conditions on the Morphology, Luminescence and Scintillation Properties of a New Light Scintillation Material Li2CaSiO4:Eu2+ for Neutron and Charged Particle Detection. Inorganics 2022, 10, 127. [Google Scholar] [CrossRef]
- Lee, J.; Hori, J.; Nakajima, K.; Sano, T.; Lee, S. Neutron Capture Cross Section Measurements of 151,153Eu Using a Pair of C6D6 Detectors. J. Nucl. Sci. Technol. 2017, 54, 1046–1057. [Google Scholar] [CrossRef]
- Sharonov, M.Y.; Bykov, A.B.; Petričević, V.; Alfano, R.R. Cr4+-Doped Li2CaSiO4 Crystal: Growth and Spectroscopic Properties. Opt. Commun. 2004, 231, 273–280. [Google Scholar] [CrossRef]
- Komendo, I.; Bondarev, A.; Fedorov, A.; Dosovitskiy, G.; Gurinovich, V.; Kazlou, D.; Kozhemyakin, V.; Mechinsky, V.; Mikhlin, A.; Retivov, V.; et al. New scintillator 6Li2CaSiO4:Eu2+for neutron sensitive screens. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1045, 167637. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.F.; Liu, L.; Lei, B.; Dong, X.; Yang, Z.; Li, H.; Pan, S. Li3AlSiO5: The First Aluminosilicate as a Potential Deep-ultraviolet Nonlinear Optical Crystal with the Quaternary Diamond-like Structure. Phys. Chem. Chem. Phys. 2015, 18, 4362–4369. [Google Scholar] [CrossRef]
- Birks, J.B. (Ed.) Front Matter. In The Theory and Practice of Scintillation Counting; International Series of Monographs in Electronics and Instrumentation; Pergamon: Oxford, UK, 1964; p. iii. [Google Scholar] [CrossRef]
- Taikar, D.; Tamboli, S.; Dhoble, S. Synthesis and photoluminescence properties of Li2SO4:RE (RE = Eu3+, Tb3+, Gd3+ and Ce3+) phosphors. Optic 2017, 139, 111–122. [Google Scholar] [CrossRef]
- Jianming, Z.; Zhao, W.; Lan, L.; Wang, J.; Chen, J.; Wang, N. Enhanced Emission from Li2CaSiO4:Eu2+ Phosphors by Doping with Y3+. J. Alloys Compd. 2014, 592, 213–219. [Google Scholar] [CrossRef]
- Retivov, V.; Dubov, V.; Komendo, I.; Karpyuk, P.; Kuznetsova, D.; Sokolov, P.; Talochka, Y.; Korzhik, M. Compositionally Disordered Crystalline Compounds for Next Generation of Radiation Detectors. Nanomaterials 2022, 12, 4295. [Google Scholar] [CrossRef]
- Kim, D.; Ji, C.W.; Lee, J.; Bae, J.-S.; Hong, T.E.; Ahn, S.I.; Chung, I.; Kim, S.-J.; Park, J.-C. Highly Luminous N3–-Substituted Li2MSiO4−δN2/3δ:Eu2+ (M = Ca, Sr, and Ba) for White NUV Light-Emitting Diodes. ACS Omega 2019, 4, 8431–8440. [Google Scholar] [CrossRef] [Green Version]
- Gektin, A.; Vasil’ev, A.N.; Suzdal, V.; Sobolev, A. Energy Resolution of Scintillators in Connection With Track Structure. IEEE Trans. Nucl. Sci. 2020, 67, 880–887. [Google Scholar] [CrossRef]
- Barishevsky, V.G.; Korzhik, M.V.; Bogatko, A.P. YAlO3:Ce3+ scintillator for the spectrometry of α-particles. Beloruss. Acad. Proc. Phys. 1992, 2, 5. (In Russian) [Google Scholar]
- Korzhik, M.; Tamulaitis, G.; Vasil’ev, A.N. Physics of Fast Processes in Scintillators; Particle Acceleration and Detection; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Gektin, A.; Vasil’ev, A. Scintillation, Phonon and Defect Channel Balance, the Sources for Fundamental Yield Increase. Funct. Mater. 2016, 23, 183–190. [Google Scholar] [CrossRef]
- Curtarolo, S.; Setyawan, W.; Wang, S.; Xue, J.; Yang, K.; Taylor, R.H.; Nelson, L.J.; Hart, G.L.W.; Sanvito, S.; Buongiorno-Nardelli, M.; et al. AFLOWLIB.ORG: A Distributed Materials Properties Repository from High-Throughput Ab Initio Calculations. Comput. Mater. Sci. 2012, 58, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Piskunov, S.; Gopejenko, A.; Pankratov, V.; Isakoviča, I.; Ma, C.-G.; Brik, M.G.; Piasecki, M.; Popov, A.I. First Principles Calculations of Atomic and Electronic Structure of Ti3+Al- and Ti2+Al-Doped YAlO3. Materials 2021, 14, 5589. [Google Scholar] [CrossRef]
- Vasil’ev, A.N. Microtheory of Scintillation in Crystalline Materials. In Engineering of Scintillation Materials and Radiation Technologies; Korzhik, M., Gektin, A., Eds.; Springer Proceedings in Physics; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–34. [Google Scholar] [CrossRef]
- Rodnyi, P.A.; Dorenbos, P.; van Eijk, C.W.E. Energy Loss in Inorganic Scintillators. Phys. Status Solidi (b) 1995, 187, 15–29. [Google Scholar] [CrossRef]
- Dorenbos, P. Fundamental Limitations in the Performance of Ce3+, Pr3+, and Eu2+ Activated Scintillators. IEEE Trans. Nucl. Sci. 2010, 57, 1162–1167. [Google Scholar] [CrossRef]
- Ronda, C.; Wieczorek, H.; Khanin, V.; Rodnyi, P. Review—Scintillators for Medical Imaging: A Tutorial Overview. ECS J. Solid State Sci. Technol. 2015, 5, R3121. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.J.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Menge, P.R.; Yang, K.; Ouspenski, V. Large Format Li Co-Doped Nai:Tl (Nail™) Scintillation Detector for Gamma-Ray and Neutron Dual Detection. In Proceedings of the 12th Pacific Rim Conference on Ceramic and Glass Technology: Ceramic Transactions, Waikoloa, HI, USA, 21–26 May 2017. [Google Scholar] [CrossRef]
- Wolszczak, W.; Dorenbos, P. Nonproportional Response of Scintillators to Alpha Particle Excitation. IEEE Trans. Nucl. Sci. 2017, 64, 1580–1591. [Google Scholar] [CrossRef]
Isotope | Energy Range, MeV | Integral Cross-Section (n, p), bn | Integral Cross-Section (n, Total), bn |
---|---|---|---|
35Cl | 1–20 | 1.66 | 45.7 |
1–150 | >1.66 | 212.4 | |
37Cl | 1–20 | >0.26 | 47.0 |
1–150 | >0.26 | 220.0 | |
69Ga | 1–20 | 0.439 | 65 |
1–200 | 0.638 | 437 | |
71Ga | 1–20 | 0.206 | 64.6 |
1–200 | 0.387 | 437 | |
27Al | 1–20 | 0.966 | 37.7 |
1–150 | 0.966 | 198 | |
16O | 1–20 | 0.302 | 30 |
1–150 | 0.435 | 144 |
Compound | Structure, Spatial Symmetry | Li Atoms/cm3 | Density, g/cm3 |
---|---|---|---|
Li2CaSiO4 | Tetragonal, . Consists of LiO4 trigonal pyramids, SiO4 tetrahedra, and CaO8 polyhedra. | 2.3 × 1022 | 2.86 |
γ-LiAlO2 | Tetragonal, P4__. Consists of LiO4, and SiO4 tetrahedra. | 2.4 × 1022 | 2.64 |
LiYO2 | Monoclinic, P21/c. Li⁺ is bonded in a distorted T-shaped geometry to three O2⁻ atoms. Y³⁺ is bonded to six O2⁻ atoms to form a mixture of distorted corner and edge-sharing YO₆ octahedra. | 1.9 × 1022 | 4.10 |
LiYSiO4 | Monoclinic, P21/c. Consists of LiO5 trigonal bipyramids, YO7 pentagonal bipyramids, and SiO4 tetrahedra. | 1.1 × 1022 | 3.65 |
LiAlSiO4 | Trigonal, R3. Consists of LiO4, AlO4 и SiO4 tetrahedra. | 1.2 × 1022 | 2.69 |
Li3AlMO5 (M = Al, Ge, Ga) | Orthorhombic, Pna21. Stannite structure. Consists of LiO4, AlO4, GeO4, and GaO4 tetrahedra. | 2.7 × 1022 | 3.08–4.2 |
LiCaAlF6 | Trigonal, . Consists of LiF6, CaF6, SiF6 octahedra | 9 × 1021 | 2.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzhik, M.; Komendo, I.; Fedorov, A.; Bondaray, A.; Kuznetsova, D.; Mechinsky, V.; Vasil’ev, A. Light Inorganic Scintillation Materials for Neutron and Charge Particle Detection. Inorganics 2023, 11, 315. https://doi.org/10.3390/inorganics11080315
Korzhik M, Komendo I, Fedorov A, Bondaray A, Kuznetsova D, Mechinsky V, Vasil’ev A. Light Inorganic Scintillation Materials for Neutron and Charge Particle Detection. Inorganics. 2023; 11(8):315. https://doi.org/10.3390/inorganics11080315
Chicago/Turabian StyleKorzhik, Mikhail, Ilia Komendo, Andrei Fedorov, Alexey Bondaray, Daria Kuznetsova, Vitaly Mechinsky, and Andrei Vasil’ev. 2023. "Light Inorganic Scintillation Materials for Neutron and Charge Particle Detection" Inorganics 11, no. 8: 315. https://doi.org/10.3390/inorganics11080315
APA StyleKorzhik, M., Komendo, I., Fedorov, A., Bondaray, A., Kuznetsova, D., Mechinsky, V., & Vasil’ev, A. (2023). Light Inorganic Scintillation Materials for Neutron and Charge Particle Detection. Inorganics, 11(8), 315. https://doi.org/10.3390/inorganics11080315