Oxidative, Genotoxic and Cytotoxic Damage Potential of Novel Borenium and Borinium Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Novel Ionic Liquids
2.2. Experimental Design
2.3. Cytotoxicity Testing
2.4. Genotoxicity Testing
2.5. Determining of TAC Levels
2.6. Statistical Analyses
3. Results
3.1. Synthesis of Borenium Ionic Liquids
3.2. Synthesis of Borinium Ionic Liquids
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turkez, H.; Yıldırım, S.; Sahin, E.; Arslan, M.E.; Emsen, B.; Tozlu, O.O.; Alak, G.; Ucar, A.; Tatar, A.; Hacimuftuoglu, A.; et al. Boron Compounds Exhibit Protective Effects against Aluminum-Induced Neurotoxicity and Genotoxicity: In Vitro and In Vivo Study. Toxics 2022, 10, 428. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Lin, H.; Jiang, L.; Wang, Z.; Sun, Y.; Zhou, Z.; de Clercq, E.; Pannecouque, C.; Kang, D.; Zhan, P.; et al. Identification of Boronate-Containing Diarylpyrimidine Derivatives as Novel HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. Molecules 2022, 27, 7538. [Google Scholar] [CrossRef]
- Banshoya, K.; Shirakawa, M.; Hieda, Y.; Ohnishi, M.; Sato, Y.; Inoue, A.; Tanaka, T.; Kaneo, Y. A Novel Amphotericin B Hydrogel Composed of Poly(Vinyl Alcohol)/Borate Complex for Ophthalmic Formulation. Chem. Pharm. Bull. 2023, 71, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Gao, Y.; Shi, W.; Xu, S.; Wang, Q.; Zhao, D.; Kong, L.; Song, W.; Wang, X.; Zhang, Y.; et al. Design and Synthesis of Boron-Containing ALK Inhibitor with Favorable In Vivo Efficacy. Bioorg. Med. Chem. 2022, 75, 117071. [Google Scholar] [CrossRef]
- Coghi, P.S.; Zhu, Y.; Xie, H.; Hosmane, N.S.; Zhang, Y. Organoboron Compounds: Effective Antibacterial and Antiparasitic Agents. Molecules 2021, 26, 3309. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Luo, X.; An, J.; Zhang, Z.; Zhang, S.; Wang, Y.; Ding, Y.; Jiang, W.; Zhang, B.; Ma, Y.; et al. Exploring Boron Applications in Modern Agriculture: Antifungal Activities and Mechanisms of Phenylboronic Acid Derivatives. Pest Manag. Sci. 2023, 79, 2748–2761. [Google Scholar] [CrossRef]
- Turkez, H.; Tozlu, O.O.; Arslan, M.E.; Mardinoglu, A. Safety and Efficacy Assessments to Take Antioxidants in Glioblastoma Therapy: From In Vitro Experiences to Animal and Clinical Studies. Neurochem. Int. 2021, 150, 105168. [Google Scholar] [CrossRef]
- Türkez, H.; Geyikoǧlu, F.; Tatar, A.; Keleş, S.; Özkan, A. Effects of Some Boron Compounds on Peripheral Human Blood. Z. Fur Naturforschung Sect. C J. Biosci. 2007, 62, 889–896. [Google Scholar] [CrossRef]
- Türkez, H.; Yıldırım, Ö.Ç.; Öner, S.; Kadı, A.; Mete, A.; Arslan, M.E.; Şahin, İ.O.; Yapça, Ö.E.; Mardinoğlu, A. Lipoic Acid Conjugated Boron Hybrids Enhance Wound Healing and Antimicrobial Processes. Pharmaceutics 2023, 15, 149. [Google Scholar] [CrossRef]
- Jalali, S.; Borumandnia, N.; Basiri, A.; Nagiee, M.; Amiri, F.B.; Tavasoli, S.; Kheirolahkhani, Y.; Taheri, M. A Comparison of Boron Supplement and Tamsulosin as Medical Expulsive Therapy for Urinary Stones After Extracorporeal Shock Wave Lithotripsy: A Randomized Controlled Clinical Trial. Biol. Trace Elem. Res. 2023. ahead of print. [Google Scholar] [CrossRef]
- Tekeli, H.; Asıcı, G.S.E.; Bildik, A. Anti- Inflammatory Effect of Boric Acid on Cytokines in Ovariectomy-Induced Rats. Cell. Mol. Biol. 2022, 67, 313–320. [Google Scholar] [CrossRef]
- Yamada, K.E.; Eckhert, C.D. Boric Acid Activation of EIF2α and Nrf2 Is PERK Dependent: A Mechanism That Explains How Boron Prevents DNA Damage and Enhances Antioxidant Status. Biol. Trace Elem. Res. 2019, 188, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, W.; Wen, T.; Miao, H.; Hu, W.; Liu, H.; Lei, M.; Zhu, Y. Design and Discovery of Novel Dipeptide Boronic Acid Ester Proteasome Inhibitors, an Oral Slowly-Released Prodrug for the Treatment of Multiple Myeloma. Eur. J. Med. Chem. 2023, 250, 115187. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Feng, H.; Bai, E.; Zhou, H.; Wang, J.; Shi, J.; Wang, X.; Hu, S.; Liu, Z.; Zhu, Y. Design, Synthesis, In Vitro and In Vivo Evaluation, and Structure-Activity Relationship (SAR) Discussion of Novel Dipeptidyl Boronic Acid Proteasome Inhibitors as Orally Available Anti-Cancer Agents for the Treatment of Multiple Myeloma and Mechanism Studies. Bioorg. Med. Chem. 2018, 26, 3975–3981. [Google Scholar] [CrossRef]
- Hsu, C.-F.; Liu, H.-M.; Peir, J.-J.; Liao, J.-W.; Chen, K.-S.; Chen, Y.-W.; Chuang, Y.-J.; Chou, F.-I. Therapeutic Efficacy and Radiobiological Effects of Boric-Acid-Mediated BNCT in an Osteosarcoma-Bearing SD Rat Model. Life 2023, 13, 514. [Google Scholar] [CrossRef]
- Cacciatore, I.; Turkez, H.; di Rienzo, A.; Ciulla, M.; Mardinoglu, A.; di Stefano, A. Boron-Based Hybrids as Novel Scaffolds for the Development of Drugs with Neuroprotective Properties. RSC Med. Chem. 2021, 12, 1944–1949. [Google Scholar] [CrossRef]
- Ozdemir, H.S.; Yunusoglu, O.; Sagmanligil, V.; Yasar, S.; Colcimen, N.; Goceroglu, R.T.; Catalkaya, E. Investigation of the Pharmacological, Behavioral, and Biochemical Effects of Boron in Parkinson-Indicated Rats. Cell. Mol. Biol. 2022, 68, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, M.; Uzgören, E.; Bakirdere, S.; Aydin, F.; Ataman, O.Y. Effects of Dietary Boron on Cervical Cytopathology and on Micronucleus Frequency in Exfoliated Buccal Cells. Environ. Toxicol. 2007, 22, 17–25. [Google Scholar] [CrossRef]
- Biţă, A.; Scorei, I.R.; Bălşeanu, T.A.; Ciocîlteu, M.V.; Bejenaru, C.; Radu, A.; Bejenaru, L.E.; Rău, G.; Mogoşanu, G.D.; Neamţu, J.; et al. New Insights into Boron Essentiality in Humans and Animals. Int. J. Mol. Sci. 2022, 23, 9147. [Google Scholar] [CrossRef]
- Prokofjevs, A.; Boussonnière, A.; Li, L.; Bonin, H.; Lacôte, E.; Curran, D.P.; Vedejs, E. Borenium Ion Catalyzed Hydroboration of Alkenes with N-Heterocyclic Carbene-Boranes. J. Am. Chem. Soc. 2012, 134, 12281–12288. [Google Scholar] [CrossRef] [Green Version]
- Piers, W.E.; Bourke, S.C.; Conroy, K.D. Borinium, Borenium, and Boronium Ions: Synthesis, Reactivity, and Applications. Angew Chem. Int. Ed. 2005, 44, 5016–5036. [Google Scholar] [CrossRef] [PubMed]
- Bapat, R.A.; Parolia, A.; Chaubal, T.; Dharamadhikari, S.; Abdulla, A.M.; Sakkir, N.; Arora, S.; Bapat, P.; Sindi, A.M.; Kesharwani, P. Recent Update on Potential Cytotoxicity, Biocompatibility and Preventive Measures of Biomaterials Used in Dentistry. Biomater. Sci. 2021, 9, 3244–3283. [Google Scholar] [CrossRef]
- Baker, S.J.; Ding, C.Z.; Akama, T.; Zhang, Y.K.; Hernandez, V.; Xia, Y. Therapeutic Potential of Boron-Containing Compounds. Future Med. Chem. 2009, 1, 1275–1288. [Google Scholar] [CrossRef] [Green Version]
- Marfavi, A.; Kavianpour, P.; Rendina, L.M. Carboranes in Drug Discovery, Chemical Biology and Molecular Imaging. Nat. Rev. Chem. 2022, 6, 486–504. [Google Scholar] [CrossRef] [PubMed]
- Ohta, K. Basic Organic and Inorganic Chemistry of Boron Clusters and Its Application to Drug Discovery. Yakugaku Zasshi 2023, 143, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Türkez, H.; Arslan, M.E.; Tatar, A.; Özdemir, Ö.; Sönmez, E.; Çadirci, K.; Hacimüftüoğlu, A.; Ceylan, B.; Açikyildiz, M.; Kahraman, C.Y.; et al. Molecular Genetics and Cytotoxic Responses to Titanium Diboride and Zinc Borate Nanoparticles on Cultured Human Primary Alveolar Epithelial Cells. Materials 2022, 15, 2359. [Google Scholar] [CrossRef] [PubMed]
- Avdeeva, V.V.; Garaev, T.M.; Breslav, N.V.; Burtseva, E.I.; Grebennikova, T.V.; Zhdanov, A.P.; Zhizhin, K.Y.; Malinina, E.A.; Kuznetsov, N.T. New Type of RNA Virus Replication Inhibitor Based on Decahydro-Closo-Decaborate Anion Containing Amino Acid Ester Pendant Group. J. Biol. Inorg. Chem. 2022, 27, 421–429. [Google Scholar] [CrossRef]
- Hey-Hawkins, E.; Teixidor, C.V. Boron-Based Compounds: Potential and Emerging Applications in Medicine; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 1–470. [Google Scholar] [CrossRef]
- Fink, K.; Uchman, M. Boron Cluster Compounds as New Chemical Leads for Antimicrobial Therapy. Coord. Chem. Rev. 2021, 431, 213684. [Google Scholar] [CrossRef]
- Bayil Oguzkan, S.; Turkez, H.; Karagul, B.; Cakir, U.; Ugras, H.I. In Vitro Cytotoxic and Genotoxic Effects of Newly Synthesised Boron Ionic Liquids. Biotechnol. Biotechnol. Equip. 2019, 33, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.P.; Hseu, Y.C.; Thiyagarajan, V.; Vadivalagan, C.; Pandey, S.; Lin, K.Y.; Hsu, Y.T.; Liao, J.W.; Lee, C.C.; Yang, H.L. The In Vitro and In Vivo Anticancer Activities of Antrodia Salmonea through Inhibition of Metastasis and Induction of ROS-Mediated Apoptotic and Autophagic Cell Death in Human Glioblastoma Cells. Biomed. Pharmacother. 2023, 158, 114178. [Google Scholar] [CrossRef]
- Environmental Health Criteria 46. Guidelines for the Study of Genetic Effects in Human Populations. 1985. Available online: https://apps.who.int/iris/handle/10665/41549 (accessed on 20 May 2023).
- Fenech, M.; Chang, W.P.; Kirsch-Volders, M.; Holland, N.; Bonassi, S.; Zeiger, E. HUMN Project: Detailed Description of the Scoring Criteria for the Cytokinesis-Block Micronucleus Assay Using Isolated Human Lymphocyte Cultures. Mutat. Res. 2003, 534, 65–75. [Google Scholar] [CrossRef]
- Yildiz, B.M.; Yuzbasioglu, D.; Yuksekdag, Z.; Cetin, D.; Unal, F.; Suludere, Z. In Vitro Genotoxic and Antigenotoxic Effects of an Exopolysaccharide Isolated from Lactobacillus Salivarius KC27L. Toxicol. Vitr. 2023, 86, 105507. [Google Scholar] [CrossRef] [PubMed]
- Bektur Aykanat, N.E.; Şahin, E.; Kaçar, S.; Bağcı, R.; Karakaya, Ş.; Dönmez, D.B.; Şahintürk, V. Cardiac Hypertrophy Caused by Hyperthyroidism in Rats: The Role of ATF-6 and TRPC1 Channels. Can. J. Physiol. Pharmacol. 2021, 99, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Prabhavathy Das, G.; Pasha Shaik, A.; Jamil, K. Cytotoxicity and Genotoxicity Induced by the Pesticide Profenofos on Cultured Human Peripheral Blood Lymphocytes. Drug Chem. Toxicol. 2008, 29, 313–322. [Google Scholar] [CrossRef]
- Fox, P.A.; Griffin, S.T.; Reichert, W.M.; Salter, E.A.; Smith, A.B.; Tickell, M.D.; Wicker, B.F.; Cioffi, E.A.; Davis, J.H.; Rogers, R.D.; et al. Exploiting Isolobal Relationships to Create New Ionic Liquids: Novel Room-Temperature Ionic Liquids Based upon (N-Alkylimidazole)(Amine)BH2+”boronium” Ions. Chem. Commun. 2005, 29, 3679–3681. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.H.; Ruether, T.; Dorman, S.C. (Keynote) Boronium Based Ionic Liquids: Salts of Boron Centered Cations as Promising Salts for Electrochemical Applications. ECS Trans. 2013, 50, 293–299. [Google Scholar] [CrossRef]
- Rüther, T.; Huynh, T.D.; Huang, J.; Hollenkamp, A.F.; Alan Salter, E.; Wierzbicki, A.; Mattson, K.; Lewis, A.; Davis, J.H. Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes. Chem. Mater. 2010, 22, 1038–1045. [Google Scholar] [CrossRef]
- Beijnen, J.H.; Flora, K.P.; Halbert, G.W.; Henrar, R.E.; Slack, J.A. CRC/EORTC/NCI Joint Formulation Working Party: Experiences in the Formulation of Investigational Cytotoxic Drugs. Br. J. Cancer 1995, 72, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Davignon, J.P.; Slack, J.A.; Beijnen, J.H.; Vezin, W.R.; Schoemaker, T.J. EORTC/CRC/NCI Guidelines for the Formulation of Investigational Cytotoxic Drugs. Eur. J. Cancer Clin. Oncol. 1988, 24, 1535–1538. [Google Scholar] [CrossRef]
- NCI Guidelines for Investigators: Adverse Event Reporting Requirements for DCTD (CTEP and CIP) and DCP INDS and IDES. 2013. Available online: https://www.hhs.gov/guidance/document/nci-guidelines-investigators-adverse-event-reporting-requirements-dctd-ctep-and-cip-and (accessed on 20 May 2023).
- Jažo, Z.; Glumac, M.; Paštar, V.; Bektić, S.; Radan, M.; Carev, I. Chemical Composition and Biological Activity of Salvia officinalis L. Essential Oil. Plants 2023, 12, 1794. [Google Scholar] [CrossRef]
- Hacioglu, C.; Kar, F.; Davran, F.; Tuncer, C. Borax Regulates Iron Chaperone- and Autophagy-Mediated Ferroptosis Pathway in Glioblastoma Cells. Environ. Toxicol. 2023, 38, 1690–1701. [Google Scholar] [CrossRef]
- Gallardo-Williams, M.T.; Chapin, R.E.; King, P.E.; Moser, G.J.; Goldsworthy, T.L.; Morrison, J.P.; Maronpot, R.R. Boron Supplementation Inhibits the Growth and Local Expression of IGF-1 in Human Prostate Adenocarcinoma (LNCaP) Tumors in Nude Mice. Toxicol. Pathol. 2004, 32, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Henderson, K.; Stella, S.L.; Kobylewski, S.; Eckhert, C.D. Receptor Activated Ca(2+) Release Is Inhibited by Boric Acid in Prostate Cancer Cells. PLoS ONE 2009, 4, e6009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barranco, W.T.; Eckhert, C.D. Boric Acid Inhibits Human Prostate Cancer Cell Proliferation. Cancer Lett. 2004, 216, 21–29. [Google Scholar] [CrossRef]
- Park, M.; Li, Q.; Shcheynikov, N.; Zeng, W.; Muallem, S. NaBC1 Is a Ubiquitous Electrogenic Na+ -Coupled Borate Transporter Essential for Cellular Boron Homeostasis and Cell Growth and Proliferation. Mol. Cell 2004, 16, 331–341. [Google Scholar] [CrossRef]
- Barranco, W.T.; Eckhert, C.D. Cellular Changes in Boric Acid-Treated DU-145 Prostate Cancer Cells. Br. J. Cancer 2006, 94, 884–890. [Google Scholar] [CrossRef] [Green Version]
- Kirlangiç, Ö.F.; Kaya-Sezginer, E.; Ören, S.; Gür, S.; Yavuz, Ö.; Özgürtaş, T. Cytotoxic and Apoptotic Effects of the Combination of Borax (Sodium Tetraborate) and 5-Fluorouracil on DLD-1 Human Colorectal Adenocarcinoma Cell Line. Turk. J. Pharm. Sci. 2022, 19, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Corti, A.; Dominici, S.; Piaggi, S.; Pompella, A. Enhancement of Ferroptosis by Boric Acid and Its Potential Use as Chemosensitizer in Anticancer Chemotherapy. Biofactors 2022, 49, 405–414. [Google Scholar] [CrossRef]
- Kar, F.; Hacioğlu, C.; Kaçar, S. The Dual Role of Boron in Vitro Neurotoxication of Glioblastoma Cells via SEMA3F/NRP2 and Ferroptosis Signaling Pathways. Environ. Toxicol. 2023, 38, 70–77. [Google Scholar] [CrossRef]
- Kahraman, E.; Göker, E. Boric Acid Exert Anti-Cancer Effect in Poorly Differentiated Hepatocellular Carcinoma Cells via Inhibition of AKT Signaling Pathway. J. Trace Elem. Med. Biol. 2022, 73, 127043. [Google Scholar] [CrossRef]
- Turkez, H.; Arslan, M.E.; Tatar, A.; Mardinoglu, A. Promising Potential of Boron Compounds against Glioblastoma: In Vitro Antioxidant, Anti-Inflammatory and Anticancer Studies. Neurochem. Int. 2021, 149, 105137. [Google Scholar] [CrossRef]
- Cebeci, E.; Yüksel, B.; Şahin, F. Anti-Cancer Effect of Boron Derivatives on Small-Cell Lung Cancer. J. Trace Elem. Med. Biol. 2022, 70, 126923. [Google Scholar] [CrossRef] [PubMed]
- Aydin, H.E.; Koldemir Gunduz, M.; Kizmazoglu, C.; Kandemir, T.; Arslantas, A.; Neurosurg, T. Cytotoxic Effect of Boron Application on Glioblastoma Cells. Turk. Neurosurg. 2021, 31, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Altinoz, M.A.; Topcu, G.; Elmaci, İ. Boron’s Neurophysiological Effects and Tumoricidal Activity on Glioblastoma Cells with Implications for Clinical Treatment. Int. J. Neurosci. 2019, 129, 963–977. [Google Scholar] [CrossRef] [PubMed]
- Boron in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality. Available online: https://apps.who.int/iris/handle/10665/70170 (accessed on 1 March 2023).
- Ince, S.; Kucukkurt, I.; Acaroz, U.; Arslan-Acaroz, D.; Varol, N. Boron Ameliorates Arsenic-Induced DNA Damage, Proinflammatory Cytokine Gene Expressions, Oxidant/Antioxidant Status, and Biochemical Parameters in Rats. J. Biochem. Mol. Toxicol. 2019, 33, e22252. [Google Scholar] [CrossRef] [PubMed]
- Ince, S.; Kucukkurt, I.; Cigerci, I.H.; Fatih Fidan, A.; Eryavuz, A. The Effects of Dietary Boric Acid and Borax Supplementation on Lipid Peroxidation, Antioxidant Activity, and DNA Damage in Rats. J. Trace Elem. Med. Biol. 2010, 24, 161–164. [Google Scholar] [CrossRef]
- Roh, D.S.; Cook, A.L.; Rhee, S.S.; Joshi, A.; Kowalski, R.; Dhaliwal, D.K.; Funderburgh, J.L. DNA Cross-Linking, Double-Strand Breaks, and Apoptosis in Corneal Endothelial Cells after a Single Exposure to Mitomycin C. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4837–4843. [Google Scholar] [CrossRef]
- Tepedelen, B.E.; Soya, E.; Korkmaz, M. Boric Acid Reduces the Formation of DNA Double Strand Breaks and Accelerates Wound Healing Process. Biol. Trace Elem. Res. 2016, 174, 309–318. [Google Scholar] [CrossRef]
- Guo, Z.; Kozlov, S.; Lavin, M.F.; Person, M.D.; Paull, T.T. ATM Activation by Oxidative Stress. Science 2010, 330, 517–521. [Google Scholar] [CrossRef] [Green Version]
- AbdelHakem, A.M.; Abdelhafez, E.-S.M.N.; AbdelHakem, A.M.; Abdelhafez, E.-S.M.N. Current Trends and Future Perspectives of Antimutagenic Agents. In Genotoxicity Mutagen. Mech. Test Methods; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Turkez, H.; Geyikoglu, F.; Tatar, A.; Keles, M.S.; Kaplan, I. The Effects of Some Boron Compounds against Heavy Metal Toxicity in Human Blood. Exp. Toxicol. Pathol. 2012, 64, 93–101. [Google Scholar] [CrossRef]
- Demir, E.; Marcos, R. Antigenotoxic Potential of Boron Nitride Nanotubes. Nanotoxicology 2018, 12, 868–884. [Google Scholar] [CrossRef] [PubMed]
- Sarıkaya, R.; Erciyas, K.; Kara, M.I.; Sezer, U.; Erciyas, A.F.; Ay, S. Evaluation of Genotoxic and Antigenotoxic Effects of Boron by the Somatic Mutation and Recombination Test (SMART) on Drosophila. Drug Chem. Toxicol. 2016, 39, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Ku, W.W.; Chapin, R.E.; Moseman, R.F.; Brink, R.E.; Pierce, K.D.; Adams, K.Y. Tissue Disposition of Boron in Male Fischer Rats. Toxicol. Appl. Pharmacol. 1991, 111, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Pawa, S.; Ali, S. Boron Ameliorates Fulminant Hepatic Failure by Counteracting the Changes Associated with the Oxidative Stress. Chem. Biol. Interact. 2006, 160, 89–98. [Google Scholar] [CrossRef]
- Wei, Y.; Yi, J.-K.; Chen, J.; Huang, H.; Wu, L.; Yin, X.; Wang, J. Boron Attenuated Diethylnitrosamine Induced Hepatocellular Carcinoma in C3H/HeN Mice via Alteration of Oxidative Stress and Apoptotic Pathway. J. Trace Elem. Med. Biol. 2022, 74, 127052. [Google Scholar] [CrossRef]
Compounds | IC50 Value | ||||
---|---|---|---|---|---|
U87MG Cells | SHSY-5Y Cells | PC-3 Cells | Detroit-562 Cells | Human Whole Blood Cells | |
Positive control (Etoposide) | 16.305 mg/L 0.027 μM | 12.665 mg/L 0.022 μM | 6.904 mg/L 0.012 μM | 26.342 mg/L 0.045 μM | 81.122 mg/L 0.138 μM |
Borenium 1 | 117.365 mg/L 317.031 μM | 86.141 mg/L 232.687 μM | 67.608 mg/L 182.625 μM | 106.884 mg/L 288.719 μM | 235.190 mg/L 635.304 μM |
Borenium 2 | 168.410 mg/L 516.304 μM | 111.361 mg/L 341.406 μM | 86.773 mg/L 266.025 μM | 179.662 mg/L 550.800 μM | 324.655 mg/L 995.314 μM |
Borenium 3 | 96.674 mg/L 318.057 μM | 77.804 mg/L 255.975 μM | 53.096 mg/L 174.685 μM | 108.025 mg/L 355.402 μM | 177.020 mg/L 582.396 μM |
Borinium 4 | 88.369 mg/L 197.098 μM | 59.113 mg/L 131.845 μM | 60.554 mg/L 135.059 μM | 92.045 mg/L 205.297 μM | 145.224 mg/L 323.907 μM |
Borinium 5 | 71.436 mg/L 132.783 μM | 55.238 mg/L 102.804 μM | 41.941 mg/L 78.057 μM | 69.786 mg/L 129.880 μM | 169.208 mg/L 314.916 μM |
Groups | CAs/Cell | MN/1000 Cells | |
---|---|---|---|
Negative control | 0.32 ± 0.04 | 2.89 ± 0.18 | |
Positive control (MMC, 5 × 10−6 M) | 1.96 ± 0.22 * | 19.35± 2.44 * | |
Borenium 1 | 1.56 mg/L (4.22 μM) | 0.34 ± 0.08 | 2.81 ± 0.23 |
3.12 mg/L (8.44 μM) | 0.32 ± 0.05 | 2.75 ± 0.21 | |
6.25 mg/L (16.88 μM) | 0.35 ± 0.07 | 2.66 ± 0.27 | |
12.5 mg/L (33,77 μM) | 0.35 ± 0.07 | 2.71 ± 0.34 | |
25 mg/L (67.53 μM) | 0.37 ± 0.05 | 2.84 ± 0.32 | |
50 mg/L (135.06 μM) | 0.34 ± 0.08 | 2.88 ± 0.25 | |
100 mg/L (270.12 μM) | 0.37 ± 0.04 | 2.93 ± 0.33 | |
200 mg/L (540.24 μM) | 0.39 ± 0.09 | 2.97 ± 0.37 | |
400 mg/L (1080.48 μM) | CD | CD | |
Borenium 2 | 1.56 mg/L (4.79 μM) | 0.24 ± 0.05 | 2.68 ± 0.25 |
3.12 mg/L (9.58 μM) | 0.27 ± 0.07 | 2.61 ± 0.28 | |
6.25 mg/L (19.16 μM) | 0.24 ± 0.09 | 2.75 ± 0.35 | |
12.5 mg/L (38.32 μM) | 0.26 ± 0.06 | 2.89 ± 0.23 | |
25 mg/L (76.64 μM) | 0.28 ± 0.08 | 2.96 ± 0.28 | |
50 mg/L (153.28 μM) | 0.33 ± 0.08 | 3.08 ± 0.34 | |
100 mg/L (306.56 μM) | 0.37 ± 0.06 | 2.95 ± 0.37 | |
200 mg/L (613.12 μM) | 0.39 ± 0.09 | 3.19 ± 0.29 | |
400 mg/L (1226.24 μM) | 0.37 ± 0.07 | 3.24 ± 0.32 | |
Borenium 3 | 1.56 mg/L (5.14 μM) | 0.30 ± 0.05 | 2.77 ± 0.27 |
3.12 mg/L (10.28 μM) | 0.30 ± 0.07 | 2.73 ± 0.31 | |
6.25 mg/L (20.56 μM) | 0.29 ± 0.08 | 2.78 ± 0.26 | |
12.5 mg/L (41.13 μM) | 0.34 ± 0.09 | 2.93 ± 0.37 | |
25 mg/L (82.25 μM) | 0.32 ± 0.09 | 3.04 ± 0.34 | |
50 mg/L (164.50 μM) | 0.30 ± 0.07 | 3.08 ± 0.33 | |
100 mg/L (329 μM) | 0.37 ± 0.08 | 3.11 ± 0.38 | |
200 mg/L (658 μM) | 0.39 ± 0.07 | 3.16 ± 0.34 | |
400 mg/L (1316 μM) | CD | CD | |
Borinium 4 | 1.56 mg/L (3.49 μM) | 0.33 ± 0.05 | 2.55 ± 0.14 |
3.12 mg/L (6.97 μM) | 0.34 ± 0.04 | 2.63 ± 0.22 | |
6.25 mg/L (13.94 μM) | 0.30 ± 0.07 | 2.94 ± 0.29 | |
12.5 mg/L (27.88 μM) | 0.36 ± 0.06 | 2.41 ± 0.15 | |
25 mg/L (55.76 μM) | 0.33 ± 0.03 | 2.77 ± 0.17 | |
50 mg/L (111.52 μM) | 0.30 ± 0.02 | 2.92 ± 0.22 | |
100 mg/L (223.04 μM) | 0.38 ± 0.06 | 2.97 ± 0.33 | |
200 mg/L (446.08 μM) | 0.42 ± 0.05 | 3.12 ± 0.18 | |
400 mg/L (892.16 μM) | CD | CD | |
Borinium 5 | 1.56 mg/L (2.91 μM) | 0.30 ± 0.05 | 2.69 ± 0.21 |
3.12 mg/L (5.82 μM) | 0.34 ± 0.07 | 2.66 ± 0.24 | |
6.25 mg/L (11.63 μM) | 0.36 ± 0.09 | 2.75 ± 0.32 | |
12.5 mg/L (23.26 μM) | 0.36 ± 0.08 | 2.83 ± 0.31 | |
25 mg/L (46.53 μM) | 0.38 ± 0.05 | 2.89 ± 0.26 | |
50 mg/L (93.06 μM) | 0.33 ± 0.09 | 2.93 ± 0.44 | |
100 mg/L (186.12 μM) | 0.47 ± 0.06 | 2.98 ± 0.38 | |
200 mg/L (372.24 μM) | 0.42 ± 0.05 | 3.06 ± 0.28 | |
400 mg/L (744.48 μM) | CD | CD |
Treatment Type | CAs/Cell | MN/1000 Cells |
---|---|---|
Negative control | 0.32 ± 0.04 a | 2.89 ± 0.18 a |
Positive control (MMC, 5 × 10−6 M) | 1.96 ± 0.22 f | 19.35 ± 2.44 e |
MMC + 25 mg/L (67.53 μM) Borenium 1 | 1.33 ± 0.33 d | 16.80 ± 2.66 d |
MMC + 50 mg/L (135.06 μM) Borenium 1 | 0.92 ± 0.25 c | 10.85 ± 1.88 bc |
MMC + 100 mg/L (270.12 μM) Borenium 1 | 0.77 ± 0.21 bc | 8.55 ± 1.75 b |
MMC +25 mg/L (76.64 μM) Borenium 2 | 1.21 ± 0.33 d | 14.18 ± 2.80 d |
MMC +50 mg/L (153.28 μM) Borenium 2 | 0.86 ± 0.17 c | 10.19 ± 2.36 bc |
MMC +100 mg/L (306.56 μM) Borenium 2 | 0.58 ± 0.19 b | 7.43 ± 1.55 b |
MMC +25 mg/L (82.25 μM) Borenium 3 | 1.46 ± 0.28 e | 15.22 ± 3.08 d |
MMC +50 mg/L (164.50 μM) Borenium 3 | 1.22 ± 0.26 d | 11.73 ± 2.77 c |
MMC +100 mg/L (329 μM) Borenium 3 | 0.92 ± 0.24 c | 9.66 ± 2.12 b |
MMC + 25 mg/L (55.76 μM) Borinium 4 | 1.38 ± 0.26 de | 14.75 ± 2.61 d |
MMC + 50 mg/L (111.52 μM) Borinium 4 | 0.97 ± 0.34 c | 10.69 ± 2.18 bc |
MMC + 100 mg/L (223.04 μM) Borinium 4 | 0.88 ± 0.30 c | 9.02 ± 1.49 b |
MMC + 25 mg/L (46.53 μM) Borinium 5 | 1.68 ± 0.28 e | 15.32 ± 2.52 d |
MMC + 50 mg/L (93.06 μM) Borinium 5 | 1.45 ± 0.13 e | 13.54 ± 2.48 d |
MMC + 100 mg/L (186.12 μM) Borinium 5 | 0.96 ± 0.27 b | 11.08 ± 2.30 bc |
Groups | TAC Level | |
---|---|---|
Negative control | 6.3 ± 0.8 c | |
Positive control (AA, 10 μM) | 15.8± 1.2 f | |
Borenium 1 | 1.56 mg/L (4.22 μM) | 6.3± 0.7 c |
3.12 mg/L (8.44 μM) | 6.5± 0.8 c | |
6.25 mg/L (16.88 μM) | 6.6± 0.6 c | |
12.5 mg/L (33,77 μM) | 7.5± 0.7 cd | |
25 mg/L (67.53 μM) | 7.9± 0.9 cd | |
50 mg/L (135.06 μM) | 8.5± 0.8 d | |
100 mg/L (270.12 μM) | 9.0± 1.1 d | |
200 mg/L (540.24 μM) | 6.1± 0.7 c | |
400 mg/L (1080.48 μM) | 5.4± 0.5 b | |
Borenium 2 | 1.56 mg/L (4.79 μM) | 6.5± 0.7 c |
3.12 mg/L (9.58 μM) | 6.9± 0.7 c | |
6.25 mg/L (19.16 μM) | 7.5± 0.9 cd | |
12.5 mg/L (38.32 μM) | 8.2± 1.0 cd | |
25 mg/L (76.64 μM) | 9.7± 0.9 d | |
50 mg/L (153.28 μM) | 10.6± 1.3 d | |
100 mg/L (306.56 μM) | 12.7± 1.4 e | |
200 mg/L (613.12 μM) | 7.9± 0.9 cd | |
400 mg/L (1226.24 μM) | 6.8± 0.7 c | |
Borenium 3 | 1.56 mg/L (5.14 μM) | 6.1± 0.8 c |
3.12 mg/L (10.28 μM) | 6.4± 0.7 c | |
6.25 mg/L (20.56 μM) | 6.6± 0.8 c | |
12.5 mg/L (41.13 μM) | 6.9± 0.7 c | |
25 mg/L (82.25 μM) | 8.9± 1.0 d | |
50 mg/L (164.50 μM) | 10.7± 1.1 d | |
100 mg/L (329 μM) | 6.5± 0.6 c | |
200 mg/L (658 μM) | 5.8± 0.7 b | |
400 mg/L (1316 μM) | 5.3 ± 0.5 b | |
Borinium 4 | 1.56 mg/L (3.49 μM) | 6.2± 0.8 c |
3.12 mg/L (6.97 μM) | 6.4± 0.6 c | |
6.25 mg/L (13.94 μM) | 6.5± 0.5 c | |
12.5 mg/L (27.88 μM) | 7.1± 0.7 c | |
25 mg/L (55.76 μM) | 7.7± 0.8 cd | |
50 mg/L (111.52 μM) | 8.4± 1.0 d | |
100 mg/L (223.04 μM) | 7.8± 0.9 cd | |
200 mg/L (446.08 μM) | 5.7± 0.6 b | |
400 mg/L (892.16 μM) | 5.1± 0.6 ab | |
Borinium 5 | 1.56 mg/L (2.91 μM) | 6.6± 0.9 c |
3.12 mg/L (5.82 μM) | 6.9± 0.7 c | |
6.25 mg/L (11.63 μM) | 7.5± 0.8 cd | |
12.5 mg/L (23.26 μM) | 8.5± 0.9 d | |
25 mg/L (46.53 μM) | 9.4± 1.0 d | |
50 mg/L (93.06 μM) | 6.0± 0.6 bc | |
100 mg/L (186.12 μM) | 5.8± 0.7 b | |
200 mg/L (372.24 μM) | 4.2± 0.5 a | |
400 mg/L (744.48 μM) | 3.6± 0.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oguzkan, S.B.; Turkez, H.; Ugras, H.I.; Tatar, A.; Mardinoglu, A. Oxidative, Genotoxic and Cytotoxic Damage Potential of Novel Borenium and Borinium Compounds. Inorganics 2023, 11, 324. https://doi.org/10.3390/inorganics11080324
Oguzkan SB, Turkez H, Ugras HI, Tatar A, Mardinoglu A. Oxidative, Genotoxic and Cytotoxic Damage Potential of Novel Borenium and Borinium Compounds. Inorganics. 2023; 11(8):324. https://doi.org/10.3390/inorganics11080324
Chicago/Turabian StyleOguzkan, Sibel Bayil, Hasan Turkez, Halil Ibrahim Ugras, Arzu Tatar, and Adil Mardinoglu. 2023. "Oxidative, Genotoxic and Cytotoxic Damage Potential of Novel Borenium and Borinium Compounds" Inorganics 11, no. 8: 324. https://doi.org/10.3390/inorganics11080324
APA StyleOguzkan, S. B., Turkez, H., Ugras, H. I., Tatar, A., & Mardinoglu, A. (2023). Oxidative, Genotoxic and Cytotoxic Damage Potential of Novel Borenium and Borinium Compounds. Inorganics, 11(8), 324. https://doi.org/10.3390/inorganics11080324