Research and Application Progress of Inverse Opal Photonic Crystals in Photocatalysis
Abstract
:1. Introduction
2. Preparation of Inverse Opal Photonic Crystal
2.1. Construction of the Opal Photonic Crystal Template
2.2. Filling of the Precursor
- (1)
- Sol-gel method: The sol-gel method uses hydrolyzing metal alkoxides and other precursors to fill the opal template under appropriate conditions, form a gel, and then calcine to obtain solid oxides. This method is suitable for the filling of most semiconductor oxide materials, but the filling rate is not high, and the volume shrinkage after drying is large. Some researchers have used the sol-gel method to prepare inverse opal photonic crystal photocatalysts [55,56,57]. Jie Yu [55] developed an inverse opal titanium dioxide photonic crystal photocatalyst to effectively degrade toluene. The catalyst was prepared via the sol-gel method using colloidal photonic crystal as a template. The catalyst was doped with carbon nitride quantum dots (CNQDs) in situ. The catalyst has good photocatalytic performance for toluene degradation. Under simulated sunlight irradiation, the samples were used to degrade the liquid pollutants represented by Rhodamine B (RhB) and phenol. As shown in Figure 6, the degradation rates of dyes and phenol reached more than 97% after 75 min and 100 min of illumination, respectively. Weijie Liu [57] improved the sol-gel permeation method. The prepared high-quality titanium dioxide inverse opal has a dense porous structure. In addition, they studied the optical properties and photocatalytic activity. The photocatalytic degradation of methyl orange was selected to evaluate the photocatalytic activity of the obtained titanium dioxide inverse opal. The conclusion is that compared with the samples prepared before improvement, the obtained titanium dioxide inverse opal has stronger photonic behavior and better photocatalytic activity.
- (2)
- The chemical vapor deposition method: can be used to diffuse the material to be filled in the form of gas precursor, adsorb it in the gap of the orderly microsphere, and then change the temperature or pressure to cause the precursor gas reaction, precipitate the solid material, and deposit it into the pores [58,59].
- (3)
- The atomic layer-by-layer deposition method(ALD): this method is actually a form of chemical vapor deposition; it involves two or more kinds of vapor precursors on the solid surface and deposition to obtain the multilayer film method. The specific process is as follows. The surface or template is deposited in the gas phase of a certain amount of precursor, so that the surface reaches a single-layer saturated adsorption, and then the excess unabsorbed gas extraction is injected into another gas phase precursor. On the surface, two precursors are used to obtain a single-layer thickness film. Repeat the process to obtain a multilayer film with a specific thickness. Some researchers have used this method to prepare inverse opal photonic crystals with excellent photocatalytic performance. László Péter Bakos [60] used the atomic deposition method to fill the carbon nanosphere template to prepare the inverse opal photonic crystal. Their team previously showed that the carbon nanospheres (CS) were the appropriate template for the atomic layer deposition of TiO2, because they were thermally stable at 300 °C in an inert atmosphere and had oxygen-containing functional groups on their surfaces. The hollow titanium dioxide shell can be prepared by subsequent annealing of the CS-TiO2 composite. They used carbon nanospheres to prepare ordered face-centered colloidal crystals, and used ALD to deposit TiO2 on them to produce inverse opal structure. They used scanning electron microscopy (SEM), Raman spectroscopy (Raman), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectroscopy (UV-vis diffuse reflectance spectroscopy) to characterize the inverse opal samples, and investigated their photocatalytic degradation activity of methyl orange solution and methylene blue dye dried on the sample surface under UV and visible light irradiation.
2.3. Removal of the Opal Template
3. Modification of Photocatalysts for Inverse Opal Photonic Crystals
3.1. Metal Modification Method
3.2. Nonmetal Modification Method
3.3. Self-Doping Methods
3.4. Other Methods
4. The Application of Inverse Opal Photonic Crystals in the Field of Photocatalysis
4.1. Sewage Treatment
4.2. Clean Energy Production
4.3. Waste Gas Treatment
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, C.M.S.; Singh, S.; Gupta, M.K.; Nimdeo, Y.M.; Raushan, R.; Deorankar, A.V.; Kumar, T.M.A.; Rout, P.K.; Chanotiya, C.S.; Pakhale, V.D.; et al. Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustain. Energy Technol. Assess. 2023, 55, 102905. [Google Scholar]
- Kasaeian, A.; Javidmehr, M.; Mirzaie, M.R.; Fereidooni, L. Integration of solid oxide fuel cells with solar energy systems: A review. Appl. Therm. Eng. 2023, 224, 120117. [Google Scholar] [CrossRef]
- Zong, X.; Wang, L. Ion-exchangeable semiconductor materials for visible light-induced photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2014, 18, 32–49. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Lan, D.; Zhang, R.; Pang, F.; Ge, J. Fabrication of Opaline ZnO Photonic Crystal Film and Its Slow-photonic Effect on Photoreduction of Carbon Dioxide. Langmuir ACS J. Surf. Colloids 2019, 35, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Likodimos, V. Photonic crystal-assisted visible light activated TiO2 photocatalysis. Appl. Catal. B Environ. 2018, 230, 269–303. [Google Scholar] [CrossRef]
- John, S. Strong localization of photons in certain disordered die lectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yablonovitch, E. Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Lei, J.; Wang, L.; Liu, Y.; Zhang, J. Highly efficient photo-Fenton degradation of methyl orange facilitated by slow light effect and hierarchical porous structure of Fe2O3-SiO2 photonic crystals. Appl. Catal. B Environ. 2018, 237, 1160–1167. [Google Scholar] [CrossRef]
- Yablonovitch EJ, J.B. Photonic band gap structures. J. Opt. Soc. Am. B 1993, 10, 283–295. [Google Scholar] [CrossRef]
- Peigen, N. Progress in the fabrication and application of photonic crystals. Acta Phys. Sin. Chin. Ed. 2010, 59, 340–350. [Google Scholar]
- Gumus, M.; Giden, I.H.; Akcaalan, O.; Turduev, M.; Kurt, H. Enhanced superprism effect in symmetry reduced photonic crystals. Appl. Phys. Lett. 2018, 113, 131103. [Google Scholar] [CrossRef]
- Parimi, P.V.; Lu, W.T.; Vodo, P.; Sokoloff, J.; Derov, J.S.; Sridhar, S. Negative refraction and left-handed electromagnetism in microwave photonic crystals. Phys. Rev. Lett. 2004, 92, 127401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, K.; Fang, C.; Pu, M.; Song, J.; Wang, D.; Zhou, X. Recent advances in photonic crystal with unique structural colors: A review. J. Mater. Sci. Technol. 2023, 141, 78–99. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Xu, J.; Liu, Z. Recent advances of polymeric photonic crystals in molecular recognition. Dye. Pigment. 2022, 205, 110544. [Google Scholar] [CrossRef]
- Li, T.; Liu, G.; Kong, H.; Yang, G.; Wei, G.; Zhou, X. Recent advances in photonic crystal-based sensors. Coord. Chem. Rev. 2023, 475, 214909. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Recent advances in photonic crystal optical devices: A review. Opt. Laser Technol. 2021, 142, 107265. [Google Scholar] [CrossRef]
- Liu, W.; Ma, H.; Walsh, A. Advance in photonic crystal solar cells. Renew. Sustain. Energy Rev. 2019, 116, 109436. [Google Scholar] [CrossRef]
- Fathi, F.; Monirinasab, H.; Ranjbary, F.; Nejati-Koshki, K. Inverse opal photonic crystals: Recent advances in fabrication methods and biological applications. J. Drug Deliv. Sci. Technol. 2022, 72, 103377. [Google Scholar] [CrossRef]
- Schroden, R.C.; Al-Daous, M.; Blanford, C.F.; Stein, A. Optical properties of inverse opal photonic crystals. Chem. Mater. 2002, 14, 3305–3315. [Google Scholar] [CrossRef]
- Fathi, F.; Chaghamirzaei, P.; Allahveisi, S.; Ahmadi-Kandjani, S.; Rashidi, M.-R. Investigation of optical and physical property in opal films prepared by colloidal and freeze-dried microspheres. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125842. [Google Scholar] [CrossRef]
- Asoh, H.; Ono, S. Fabrication of inverse opal structure of silica by si anodization. In Proceedings of the 206th Meeting of the Electrochemical Society: Third International Symposium on Pits and Pores: Formation, Properties, and Significance for Advanced Materials, Honolulu, HW, USA, 3–8 October 2004; The Electrochemical Society: Honolulu, HI, USA, 2006. [Google Scholar]
- Zhou, Z.; Zhao, X.S. Opal and inverse opal fabricated with a flow-controlled vertical deposition method. Langmuir 2005, 21, 4717–4723. [Google Scholar] [CrossRef]
- Borel, P.I.; Harpøth, A.; Frandsen, L.H.; Kristensen, M.; Shi, P.; Jensen, J.S.; Sigmund, O. Topology optimization and fabrication of photonic crystal structures. Opt. Express 2004, 12, 1996–2001. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, G.I.N.; Waterland, M.R. Opal and inverse opal photonic crystals: Fabrication and characterization. Polyhedron 2007, 26, 356–368. [Google Scholar] [CrossRef]
- Qi, M.; Lidorikis, E.; Rakich, P.T.; Johnson, S.G.; Joannopoulos, J.D.; Ippen, E.P.; Smith, H.I. A three-dimensional optical photonic crystal with designed point defects. Nature 2004, 429, 538–542. [Google Scholar] [CrossRef] [PubMed]
- von Freymann, G.; Kitaev, V.; Lotsch, B.V.; Ozin, G.A. Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 2013, 42, 2528–2554. [Google Scholar] [CrossRef] [Green Version]
- Klimonsky, S.O.; Abramova, V.V.; Sinitskii, A.S.; Tretyakov, Y.D. Photonic crystals based on opals and inverse opals: Synthesis and structural features. Russ. Chem. Rev. 2011, 80, 1191–1207. [Google Scholar] [CrossRef]
- Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S.W.; Lopez, C.; Meseguer, F.; Miguez, H.; Mondia, J.P.; et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensionalband gap near 1.5 micrometres. Nature 2000, 405, 437–440. [Google Scholar] [CrossRef]
- Noda, S. Full three-dimensional photonicband gap crystals at near-infrared wavelengths. Science 2000, 289, 604–606. [Google Scholar] [CrossRef]
- Baba, T. Control of light emission and propagation in photonic crystals. In Proceedings of the 2008 International Nano-Optoelectronics Workshop, Tokyo, Japan, 2–15 August 2008. [Google Scholar]
- Lodahl, P.; Floris van Driel, A.; Nikolaev, I.S.; Irman, A.; Overgaag, K.; Vanmaekelbergh, D.; Vos, W.L. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 2004, 430, 654–657. [Google Scholar] [CrossRef] [Green Version]
- Curti, M.; Zvitco, G.; Grela, M.A.; Mendive, C.B. Angle dependence in slow photonic photocatalysis using TiO2 inverse opals. Chem. Phys. 2018, 502, 33–38. [Google Scholar] [CrossRef]
- Madanu, T.L.; Mouchet, S.R.; Deparis, O.; Liu, J.; Li, Y.; Su, B.-L. Tuning and transferring slow photons from TiO2 photonic crystals to BiVO4 nanoparticles for unprecedented visible light photocatalysis. J. Colloid Interface Sci. 2023, 634, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Gu, W.; Hu, S.; Hu, Y.; Zhou, L.; Lei, J.; Wang, L.; Liu, Y.; Zhang, J. Phosphorus-doped inverse opal g-C3N4 for efficient and selective CO generation from photocatalytic reduction of CO2. Catal. Sci. Technol. 2020, 10, 3694–3700. [Google Scholar] [CrossRef]
- Waterhouse, G.I.; Chen, W.T.; Chan, A.; Sun-Waterhouse, D. Achieving Color and Function with Structure: Optical and Catalytic Support Properties of ZrO2 Inverse Opal Thin Films. ACS Omega 2018, 3, 9658–9674. [Google Scholar] [CrossRef] [Green Version]
- Fathi, F.; Rashidi, M.R.; Pakchin, P.S.; Ahmadi-Kandjani, S.; Nikniazi, A. Photonic Crystal Based Biosensors: Emerging Inverse Opals for Biomarker Detection. Talanta 2020, 221, 121615. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Wen, Y.; Zhang, Y.; Wang, J.; Song, Y.; Jiang, L.; Zhu, D. Fabrication of closed-cell polyimide inverse opal photonic crystals with excellent mechanical properties and thermal stability. J. Mater. Chem. 2008, 18, 2262–2267. [Google Scholar] [CrossRef]
- Quan, L.N.; Jang, Y.H.; Stoerzinger, K.A.; May, K.J.; Jang, Y.J.; Kochuveedu, S.T.; Shao-Horn, Y.; Kim, D.H. Soft-template-carbonization route to highly textured mesoporous carbon-TiO2 inverse opals for efficient photocatalytic and photoelectrochemical applications. Phys. Chem. Chem. Phys. 2014, 16, 9023–9030. [Google Scholar] [CrossRef]
- Luo, D.; Chen, Q.; Qiu, Y.; Liu, B.; Zhang, M. Carbon Dots-Decorated Bi2WO6 in an Inverse Opal Film as a Photoanode for Photoelectrochemical Solar Energy Conversion under Visible-Light Irradiation. Materials 2019, 12, 1713. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Karuturi, S.K.; Su, L.T.; Tok, A.I.Y. TiO2 inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications. Energy Environ. Sci. 2010, 4, 209–215. [Google Scholar] [CrossRef]
- Xia, Y.N.; Gates, B.; Yin, Y.D.; Lu, Y.J.A.M. Monodispersed Colloidal Spheres: Old Materials with New Applications. Adv. Mater. 2000, 12, 693–713. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, Y.; Liu, G.; Li, Y.; Fan, Q.; Shao, J. Fabrication of high-quality silica photonic crystals on polyester fabrics by gravitational sedimentation self-assembly. Color. Technol. 2016, 131, 413–423. [Google Scholar] [CrossRef]
- Gao, W.; Rigout, M.; Owens, H. Self-assembly of silica colloidal crystal thin films with tuneable structural colours over a wide visible spectrum. Appl. Surf. Sci. 2016, 380, 12–15. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.L.; Lee, C.H.; Kan, C.W.; Jin, S. Fabrication of structural-coloured carbon fabrics by thermal assisted gravity sedimentation method. Nanomaterials 2020, 10, 1133. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.J.; Zhou, L.; Fan, Q.G.; Chai, L.; Shao, J. The vertical deposition selfassembly process and the formation mechanism of poly photonic crystals on polyester fabrics. J. Mater. Sci. 2016, 51, 2859–2868. [Google Scholar] [CrossRef]
- Sinitskii, A.; Abramova, V.; Grigorieva, N.; Grigoriev, S.; Snigirev, A.; Byelov, D.V.; Petukhov, A.V. Revealing stacking sequences in inverse opals by microradian X-ray diffraction. EPL Europhys. Lett. 2010, 89, 14002. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ren, S.; Chang, X.; Hu, J.; Wang, X. Effect of the combination of inverse opal photonic superficial areaic crystal and heterojunction on active free radicals and its effect on the mechanism of photocatalytic removal of organic pollutants. Ceram. Int. 2023, 49, 27107–27116. [Google Scholar] [CrossRef]
- Xia, Y.; Yin, Y.; Lu, Y.; McLellan, J. Template-Assisted Self-Assembly of Spherical Colloids into Complex and Controllable Structures. Adv. Funct. Mater. 2010, 13, 907–918. [Google Scholar] [CrossRef]
- Pham, K.; Temerov, F.; Saarinen, J.J. Multicompound inverse opal structures with gold nanoparticles for visible light photocatalytic activity. Mater. Des. 2020, 194, 108886. [Google Scholar] [CrossRef]
- Yang, Z.; Ji, Z.; Huang, X.; Xie, Q.; Fu, M.; Li, B.; Li, L. Preparation and photonicband gap properties of Na1/2Bi1/2TiO3 inverse opal photonic crystals. J. Alloys Compd. 2009, 471, 241–243. [Google Scholar] [CrossRef]
- Engelken, R.D.; Mccloud, H.E.; Lee, C.; Slayton, M.; Ghoreishi, H. ChemInform Abstract: Low Temperature Chemical Precipitation and Vapor Deposition of SnxS Thin Films. ChemInform 1988, 19, 50269–50278. [Google Scholar] [CrossRef]
- Míguez, H.; Chomski, E.; García-Santamaría, F.; Ibisate, M.; John, S.; López, C.; Meseguer, F.; Mondia, J.P.; Ozin, G.A.; Toader, O.; et al. Photonicband gap Engineering in Germanium Inverse Opals by Chemical Vapor Deposition. Adv. Mater. 2010, 13, 1634–1637. [Google Scholar] [CrossRef]
- Liu, Y.R.; Hsueh, Y.C.; Perng, T.P. Fabrication of TiN inverse opal structure and Pt nanoparticles by atomic layer deposition for proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2017, 42, 10175–10183. [Google Scholar] [CrossRef]
- Chung, Y.W.; Leu, I.C.; Lee, J.H.; Hon, M.-H. Filling behavior of ZnO nanoparticles into opal template via electrophoretic deposition and the fabrication of inverse opal. Electrochim. Acta 2009, 54, 3677–3682. [Google Scholar] [CrossRef]
- Yu, J.; Caravaca, A.; Guillard, C.; Vernoux, P.; Zhou, L.; Wang, L.; Lei, J.; Zhang, J.; Liu, Y. Carbon Nitride Quantum Dots Modified TiO2 Inverse Opal Photonic Crystal for Solving Indoor VOCs Pollution. Catalysts 2021, 11, 464. [Google Scholar] [CrossRef]
- Tan, T.; Xie, W.; Zhu, G.; Shan, J.; Xu, P.; Li, L.; Wang, J. Fabrication and photocatalysis of BiFeO3 with inverse opal structure. J. Porous Mater. 2015, 22, 659–663. [Google Scholar] [CrossRef]
- Liu, W.; Zou, B.; Zhao, J.; Cui, H. Optimizing sol-gel infiltration for the fabrication of high-quality titania inverse opal and its photocatalytic activity. Thin Solid Film. 2010, 518, 4923–4927. [Google Scholar] [CrossRef]
- Juarez, B.H.; Garcia, P.D.; Golmayo, D.; Blanco, A.; López, C. ZnO Inverse Opals by Chemical Vapor Deposition; Wiley: New York, NY, USA, 2005; pp. 2761–2765. [Google Scholar]
- Caicedo, J.; Taboada, E.; Hrabovský, D.; López-García, M.; Herranz, G.; Roig, A.; Blanco, A.; López, C.; Fontcuberta, J. Facile route to magnetophotonic crystals by infiltration of 3D inverse opals with magnetic nanoparticles. J. Magn. Magn. Mater. 2010, 322, 1494–1496. [Google Scholar] [CrossRef]
- Bakos, L.P.; Karajz, D.; Katona, A.; Hernadi, K.; Parditka, B.; Erdélyi, Z.; Lukács, I.; Hórvölgyi, Z.; Szitási, G.; Szilágyi, I.M. Carbon nanosphere templates for the preparation of inverse opal titania photonic crystals by atomic layer deposition—ScienceDirect. Appl. Surf. Sci. 2020, 504, 144443. [Google Scholar] [CrossRef]
- Long, J.; Fu, M.; Li, C.; Sun, C.; He, D.; Wang, Y. High-quality ZnO inverse opals and related heterostructures as photocatalysts produced by atomic layer deposition. Appl. Surf. Sci. 2018, 454, 112–120. [Google Scholar] [CrossRef]
- Birnal, P.; de Lucas, M.M.; Pochard, I.; Herbst, F.; Heintz, O.; Saviot, L.; Domenichini, B.; Imhoff, L. Visible-light photocatalytic degradation of dyes by TiO2-Au inverse opal films synthesized by Atomic Layer Deposition. Appl. Surf. Sci. 2023, 609, 155213. [Google Scholar] [CrossRef]
- Teh, L.K.; Wong, C.C.; Yang, H.Y.; Lau, S.P.; Yu, S.F. Lasing in electrodeposited ZnO inverse opal. Appl. Phys. Lett. 2007, 91, 485. [Google Scholar] [CrossRef]
- Yan, H.; Yang, Y.; Fu, Z.; Yang, B.; Xia, L.; Xu, Y.; Fu, S.; Li, F. Cathodic Electrodeposition of Ordered Porous Titania Films by Polystyrene Colloidal Crystal Templating. Chem. Lett. 2006, 35, 864–865. [Google Scholar] [CrossRef]
- Wu, M.; Liu, J.; Jin, J.; Wang, C.; Huang, S.; Deng, Z.; Li, Y.; Su, B.-L. Probing significant light absorption enhancement of titania inverse opal films for highly exalted photocatalytic degradation of dye pollutants. Appl. Catal. B Environ. 2014, 150–151, 411–420. [Google Scholar] [CrossRef]
- Chung, W.A.; Hung, P.S.; Wu, C.J.; Guo, W.Q.; Wu, P.W. Fabrication of composite Cu2O/Au inverse opals for enhanced detection of hydrogen peroxide: Synergy effect from structure and sensing mechanism. J. Alloys Compounds 2021, 886, 161243–161255. [Google Scholar] [CrossRef]
- Chen, J.I.L.; Loso, E.; Ebrahim, N.; Ozin, G.A. Synergy of Slow photonic and Chemically Amplified Photochemistry in Platinum Nanocluster-Loaded Inverse Titania Opals. J. Am. Chem. Soc. 2008, 130, 5420–5421. [Google Scholar] [CrossRef]
- Huang, X.; Hu, Y.; Zhou, L.; Lei, J.; Wang, L.; Zhang, J. Fabrication of CuS-modified inverse opal g-C3N4 photocatalyst with enhanced performance of photocatalytic reduction of CO2. J. CO2 Util. 2021, 54, 101779. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, B.; He, Y.; Sun, L.; Hou, P.; Gan, Z.; Yu, L.; Dong, L. Design and synthesis of black phosphorus quantum dot sensitized inverse opal TiO2 photonic crystal with outstanding photocatalytic activities. Appl. Surf. Sci. 2023, 609, 155442. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, L.; Wang, L.; Huang, Y.; Xu, L.; Chen, J. One-step fabrication of N-doped TiO2 inverse opal films with visible light photocatalytic activity. Catal. Commun. 2013, 40, 106–110. [Google Scholar] [CrossRef]
- Zhang, W.J.; Zhang, X.; Zhang, Z.; Wang, W.; Xie, A.; Xiao, C.; Zhang, H.; Shen, Y. A Nitrogen-Doped Carbon Dot-Sensitized TiO2 Inverse Opal Film: Preparation, Enhanced Photoelectrochemical and Photocatalytic Performance. J. Electrochem. Soc. 2015, 162, H638–H644. [Google Scholar] [CrossRef]
- Qi, D.; Lu, L.; Xi, Z.; Wang, L.; Zhang, J. Enhanced photocatalytic performance of TiO2 based on synergistic effect of Ti3+ self-doping and slow light effect. Appl. Catal. B Environ. 2014, 160–161, 621–628. [Google Scholar] [CrossRef]
- Zhou, L.; He, H.; Tao, M.; Muhammad, Y.; Gong, W.; Liu, Q.; Zhao, Z.; Zhao, Z. Chloroplast-inspired microenvironment engineering of inverse opal structured IO-TiO2/Chl/IL for highly efficient CO2 photolytic reduction to CH4. Chem. Eng. J. 2023, 464, 142685. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Qi, K.; Wang, Y.; Wen, F.; Wang, J. Novel inverse opal Bi2WO6/Bi2O3 S-scheme heterojunction with efficient charge separation and fast migration for high activity photocatalysis. Appl. Surf. Sci. 2023, 607, 155085. [Google Scholar] [CrossRef]
- Fang, J.; Fan, H.; Li, M.; Long, C. Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution. J. Mater. Chem. A 2015, 3, 13819–13826. [Google Scholar] [CrossRef]
- Prabhu, S.; Pudukudy, M.; Sohila, S.; Harish, S.; Navaneethan, M.; Navaneethan, D.; Ramesh, R.; Hayakawa, Y. Synthesis, structural and optical properties of ZnO spindle/reduced graphene oxide composites with enhanced photocatalytic activity under visible light irradiation. Opt. Mater. 2018, 79, 186–195. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, P.; An, W.; Liu, L.; Liang, Y.; Cui, W. In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater. Appl. Catal. B Environ. 2019, 245, 130–142. [Google Scholar] [CrossRef]
- Li, J.; Peng, T.; Zhang, Y.; Zhou, C.; Zhu, A. Polyaniline modified SnO2 nanoparticles for efficient photocatalytic reduction of aqueous Cr(VI) under visible light. Sep. Purif. Technol. 2018, 210, 120–129. [Google Scholar] [CrossRef]
- Ahmed, A.; Siddique, M.N.; Alam, U.; Ali, T.; Tripathi, P. Improved photocatalytic activity of Sr doped SnO2 nanoparticles: A role of oxygen vacancy. Appl. Surf. Sci. 2019, 463, 976–985. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Liu, D.; Gao, Y.; Song, C.; Shi, Y.; Qu, D.; Shi, J. Morphology effect of honeycomb-like inverse opal for efficient photocatalytic water disinfection and photodegradation of organic pollutant. Mol. Catal. 2018, 444, 42–52. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, J.; Wang, X.; Xu, H.; Yuan, S.; Zhang, Q.; Zhang, M. Preparation of inverse opal titanium dioxide for photocatalytic performance research. Opt. Mater. 2019, 96, 109287. [Google Scholar] [CrossRef]
- Ogden, J.M.; Williams, R.H. Electrolytic hydrogen from thin-film solar cells. Int. J. Hydrogen Energy 1990, 15, 155–169. [Google Scholar] [CrossRef]
- Aydin, E.B.; Ates, S.; Sigircik, G. CuO-TiO2 nanostructures prepared by chemical and electrochemical methods as photo electrode for hydrogen production. Int. J. Hydrogen Energy 2022, 47, 6519–6534. [Google Scholar] [CrossRef]
- Fiorenza, R.; Bellardita, M.; Scirè, S.; Palmisano, L. Photocatalytic H2 production over inverse opal TiO2 catalysts. Catal. Today 2019, 321–322, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Lv, C.; Wang, L.; Liu, X.; Zhao, L.; Lan, X.; Shi, J. An efficient inverse opal (IO)-TiO2-MoO3 − x for photocatalytic H2 evolution and RhB degradation—The synergy effect of IO structure and plasmonic MoO3 − x. Appl. Surf. Sci. 2020, 527, 146726. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, G.; Ma, D.; Li, Z.; Yan, Z.; Xu, A.; Zhong, W.; Fang, B. Synergistic effects of g-C3N4 three-dimensional inverse opals and Ag modification toward high-efficiency photocatalytic H2 evolution. J. Clean. Prod. 2021, 328, 129745. [Google Scholar] [CrossRef]
- Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. 2013, 52, 7372–7408. [Google Scholar] [CrossRef]
- Wei, Y.; Jiao, J.; Zhao, Z.; Liu, J.; Li, J.; Jiang, G.; Wang, Y.; Duan, A. Fabrication of inverse opal TiO2-supported Au@CdS core-shell nanoparticles for efficient photocatalytic CO2 conversion. Appl. Catal. B. Environ. Int. J. Devoted Catal. Sci. Its Appl. 2015, 179, 422–423. [Google Scholar] [CrossRef]
- Jiating, X.; Xiaohan, Z. Efficient photocatalytic reduction of CO2 by a rhenium-doped TiO2-x/SnO2 inverse opal S-scheme heterostructure assisted by the slow-phonon effect. Separat. Purificat. Technol. 2021, 277, 119431. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, L.; Tian, Y.; Yu, J.; Lei, J.; Wang, L.; Liu, Y.; Zhang, J. Z-scheme Inverse Opal CN/BiOBr Photocatalyst for Highly Efficient Degradation of Antibiotics. Phys. Chem. Chem. Phys. 2019, 21, 12818–12825. [Google Scholar] [CrossRef]
IOPC Materials | Photocatalysis Application | Result | Ref |
---|---|---|---|
Mg-TiO2 | Sewage treatment | The Mg-TiO2 system exhibits much higher activity than its counterpart due to the reduced band gap, which is due to the doping of Mg2+ in the system. By adding Mg2+, the sterilization rate under visible light can reach 100%. | [80] |
g-C3N4-BiOBr | Sewage treatment | It provides a new idea for the preparation of a new visible light-driven Z-type photocatalyst and a new idea for the study of wastewater treatment methods. | [90] |
TiO2-BiVO4 TiO2-CuO | H2 production | The synthesis of inverse opal material combined with TiO2 structure modification and chemical modification through the addition of BiVO4 or CuO can improve H2 production via the photocatalytic decomposition of water. | [84] |
TiO2-MoO3-x | H2 production | The results show that compared with a single control factor, the composite of IO structure and plasma material (MoO3) has higher light capture ability and carrier separation and transfer efficiency, which can significantly improve the photocatalytic activity of RhB degradation and hydrogen evolution. | [85] |
Ag-C3N4 | H2 production | The results showed that the hydrogen evolution performance of Ag-CN IO was the best among all the tested samples. | [86] |
TiO2-ZrO2 | Carbon dioxide conversion | This study improved the oxidation-reduction ability of the material because the construction of inverse opal core-shell structure promoted the nano-crystallization of the material. | [55] |
Au@CdS/IO-TiO2 | Carbon dioxide conversion | Under simulated sunlight irradiation, the Au@CdS/IO-TiO2 displayed excellent photocatalytic performance for the CO2 reduction of CH4. | [88] |
TiO2-x/SnO2 | Carbon dioxide conversion | A strategy for constructing a new S-type heterojunction structure in visible light photocatalysts is proposed, which provides an ideal method for improving photocatalytic activity to treat organic pollutants and renewable energy production. | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, H.; Yang, S.; Talukder, E.; Huang, C.; Chen, K. Research and Application Progress of Inverse Opal Photonic Crystals in Photocatalysis. Inorganics 2023, 11, 337. https://doi.org/10.3390/inorganics11080337
Xiang H, Yang S, Talukder E, Huang C, Chen K. Research and Application Progress of Inverse Opal Photonic Crystals in Photocatalysis. Inorganics. 2023; 11(8):337. https://doi.org/10.3390/inorganics11080337
Chicago/Turabian StyleXiang, Hongming, Shu Yang, Emon Talukder, Chenyan Huang, and Kaikai Chen. 2023. "Research and Application Progress of Inverse Opal Photonic Crystals in Photocatalysis" Inorganics 11, no. 8: 337. https://doi.org/10.3390/inorganics11080337
APA StyleXiang, H., Yang, S., Talukder, E., Huang, C., & Chen, K. (2023). Research and Application Progress of Inverse Opal Photonic Crystals in Photocatalysis. Inorganics, 11(8), 337. https://doi.org/10.3390/inorganics11080337