Next Article in Journal
Facile Synthesis and Characterization of Novel Nanostructures for the Efficient Disposal of Crystal Violet Dye from Aqueous Media
Previous Article in Journal
Research and Application Progress of Inverse Opal Photonic Crystals in Photocatalysis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Communication

Heterotridentate Organomonophosphines in Pt(η3-P1C1C2)(Y) and Pt(η3-P1C1N1)(Y) Derivatives—Structural Aspects

1
Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
2
Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
3
Toxicological and Antidoping Centre, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
*
Authors to whom correspondence should be addressed.
Inorganics 2023, 11(8), 338; https://doi.org/10.3390/inorganics11080338
Submission received: 24 July 2023 / Revised: 11 August 2023 / Accepted: 14 August 2023 / Published: 16 August 2023
(This article belongs to the Section Inorganic Materials)

Abstract

:
This paper covers Pt(II) complexes of the compositions Pt(η3-P1C1C2)(Y) (Y = NL or I) and Pt(η3-P1C1N1)(Y), Y = OL, NL, CL, Cl or Br). These complexes crystallized in four crystal classes: monoclinic (9 examples), triclinic (3 examples), orthorhombic (3 examples), and tetragonal (2 examples). The structural parameters (Pt-L, L-Pt-L) are analyzed and discussed with attention to the distortion of square-planar geometry about the Pt(II) atoms and trans-influence. These data are compared and discussed with those of Pt(η3-P1N1N2)(Y), Pt(η3-P1N1X1)(Y), (X1=O1, C1, S1, Se1), Pt(η3-N1P1N2)(Cl), Pt(η3-S1P1S2)(Cl), Pt(η3-P1S1Cl1)(Cl), and Pt(η3-P1Si1N1)(OL) types. Each heterotridentate ligand creates two metallocyclic rings with a common central ligating atom. These η3-ligands form twenty-three types of metallocycles and differ by the number and type of the atoms involved in the metallocyclic rings.

Graphical Abstract

1. Introduction

Platinum compounds have significantly established themselves in the areas of biochemistry [1], catalysis [2,3,4,5], spectroscopy [6,7], and coordination theory. Very recently, a valuable review focused on the importance and advances in synthetic, structural, thermodynamic, electronic, and photophysical properties of Pt-based heteropolynuclear complexes was published [8].
Organophosphines, a soft P-donor ligand are very useful for building a wide variety of platinum complexes. We classified and analyzed structural data of monomeric platinum(II) coordination complexes with an inner coordination sphere: PtP4, PtP3X (X = H, F, O, N, Cl, S, Br, or I), and PtP2 × 2 (X = H, F, O, N, CN or B) in which P-donor ligands are monodentate organomonophosphines [9]. Recently, we classified and analyzed structural data of monomeric heterotridentate organomonophosphines with inner coordination spheres, Pt(η3-P1N1N2)(Y) (Y = CH3 or Cl), Pt(η3-P1N1X1)(Y) (X1 = O1, Y = P2L, Cl or I), (X1 = C1, Y = N3L, Cl or Br); (X1 = S1; Y = Cl), and (X1 = Se1, Y = Cl) [10]. A very recent paper analyzed and classified X-ray data of homotridentate ligands of the Pt(η3-X1X2X3)(PR3), (X = N1, N2, N3; S1, S2, S3; or Te1, Te2, Te3) [11]. These structural studies were based on the analysis of crystallographic data. Among many other analysis methods (IR, TGA, etc.), another powerful approach for structural studies of complexes and confirming their conformations is DTF (density functional theory) as a quantum-mechanical atomistic simulation method, demonstrating recently, e.g., in refs. [12,13].
This survey aims to classify and analyze structural parameters of another class of organophoshine structures, namely Pt(η3-P1C1C2)(Y) (Y = NL, or I) and Pt(η3-P1C1N1)(Y), (Y = OL, NL, Cl or Br). The data are discussed and compared with Pt(η3-P1N1N2)(Y) and Pt (η3-P1N1X1)(Y) structures. This structural study was based on the analysis of crystallographic data that were available, unlike other methods of structural analysis, for all complexes involved in this work.

2. Results and Discussion

2.1. Pt(η3-P1C1C2)(Y) Type

There are five examples of Pt(η3-P1C1C2)(Y) type, and their structural data are gathered in Table 1. In four of them: orthorhombic [Pt{η3-But2P(C18H13)}(py)] (at 110 K), and three monoclinic [Pt{η3-But2P(C18H13O)}(NCCH3)] (at 110 K), [Pt{η3-But2P(C17H9F2)}(NCCH3)] (at 110 K), and [Pt{η3-But2P(C17 H10F)}(NCCH3)] (at 110 K) [14] a distorted square-planar geometry about Pt is build up by η3-P1C1C2 ligand and monodentate N donor atom/ligand. The structure of [Pt{η3-But2P(C18H13)}(py)] [14] is shown in Figure 1 as an example. Each η3-ligand forms two five-membered metallocyclic rings with a common C1 atom of the P1C2C1C2C2 type. The mean values of the respective chelate L-Pt-L bond angles are 83.4 (±8)° (P1-Pt-C1) and 81.1 (±4)° (C1-Pt-C2). The remaining L-Pt-L bond angles open in the order (mean values): 94.5 (±2.5)° (C2-Pt-N) < 103.0 (±8)° (P1-Pt-N) <163. 9 (±7)° (P1-P1-C2) < 171.8 (±7)° (C1-Pt-N). The Pt-L bond distance elongates in the order (mean values): 1.977 (±4) Å (Pt-C1, trans N) < 2.054 (±10) Å (Pt-C2, trans to P1) < 2.067 (±12) Å (Pt-N) < 2.327 (±11) Å (Pt-P1).
In triclinic [Pt{η3-Ph2P(CH2C(Me)=CPPh2(C6H4Ph)}(I)] (at 100K) [15], heterotridentate ligand creates two five-membered metallocyclic rings of the P1C2C1PCC2 type, with the values of the respective chelate L-Pt-L bond angles of 79.3° (P1-Pt-C1) and 86.0° (C1-Pt-C2). The remaining L-Pt-L bond angles open in the order: 96.3° (C2-Pt-I) < 98.5° (P1-Pt-I) < 165.0° (P1-Pt-C2) < 175.9° (C1-Pt-I). The Pt-L bond distance elongates in the order: 2.010 Å (Pt-C1) < 2.042 Å (Pt-C2) < 2. 269 Å (Pt-P1) < 2. 663 Å (Pt-I).

2.2. Pt(η3-P1C1N1)(Y) Type

There are thirteen examples of Pt(η3-P1C1N1)(Y) type, and their structural data are given in Table 2.

2.2.1. Pt(η3-P1C1N1)(OL) Type

In three complexes, two monoclinic [Pt{η3-But2P(C9H9NMe2)}(OH)] (at 120 K), [Pt{η3-But2P(C9H9NMe2)}(H2O)]BF4.thf (at 120 K) and orthorhombic [Pt{η3-But2P(C9H9NMe2)} (OS(=O)2CF3)] (at 120 K) [16] a distorted square planar geometry about Pt(II) atom is built up by η3-P1C1N1 ligand and monodentate OL. Each heterotridentate ligand creates two metallocyclic rings, each one five- and six-membered with common C1 atom of the type P1C2C1C3N1 with the mean values of the respective chelate L-Pt-L bond angles of 84.1 (±4)° (P1-Pt-C1) and 95.5 (±4)° (C1-Pt-N1). The remaining L-Pt-L bond angles open in the order (mean values): 86.0 (±1.2)° (N1-Pt-O) < 94.6 (±1.6)° (P1-Pt-O) < 174.6 (±7)° (P1-Pt-N1) < 175.9 (±2.7)° (C1-Pt-O). The Pt-L bond distance elongates in the order (mean values): 2.007 (± 13] Å (Pt-C1, trans to O) < 2.166 (±2) Å (Pt-N1, trans to P1) < 2.175 (±5) Å (Pt-O) < 2.229 (±19) (Pt-P1).

2.2.2. Pt (η3-P1C1N1)(CL) Type

In another three complexes, monoclinic [Pt{η3-But2P(C9H9NMe2)}(CO)]BF4 (at 120 K) [15], tetragonal [Pt{η3-But2P(C9H9NMe2)}(CH3)] (at 120 K) [17], and triclinic [Pt{η3-But2P(C9H9NMe2)}{C(Ph)=N=N}] (at 120 K) [17] the η3-P1C1N1 ligand with monodentate C-donor ligand completed a distorted square planar geometry (PtP1C1N1C). The heterotridentate ligand created five- and six-membered metallocyclic rings with a common C1 atom of the P1C2C1C3N1 type. The mean values of the respective chelate L-Pt-L bond angles are 83.4 (±4)° (P1-Pt-C1) and 91.8 (±2.5)° (C1-Pt-N1). The remaining L-Pt-L bond angles open in the order (mean values): 90.7 (±3.7)° (N1-Pt-C) < 94.9 (±1.9) (P1-Pt-C) < 171.8 (±3.8)° (P1-Pt-N1) < 172.3 (±2.8)° (C1-Pt-C). The Pt-L bond distance elongates in the order (mean values): 2.064 (±9) Å Pt-C1, trans to C) < 2.080 (±16) Å (Pt-C) < 2.175 (±12) Å (Pt-N1, trans to P1) < 2.232 (±25) Å (Pt-P1).

2.2.3. Pt(η3-P1C1N1)(Cl) Type

There are four complexes of this type. In monoclinic [Pt{η3-But2P(C8H7NEt2)}(Cl)] (at 120 K) [16] the η3-ligand creates two five-membered metallocyclic rings with common C1 atom of the P1C2C1C2N1 type. The values of the respective chelate L-Pt-L bond angles are 83.6° (P1-Pt-C1) and 82.8° (C1-Pt-N1). The remaining angles are 97.2° (N1-Pt-Cl), 100.5° (P1-Pt-Cl), 166.2° (P1-Pt-N1), and 174.3° (C1-Pt-Cl).
In another monoclinic [Pt{η3-But2P(C9H9NMe2)}(Cl)] (at 120 K) [17], heterotridentate ligand creates five- and six-membered metallocyclic rings with common C1 atom of the P1C2C1C3 N1 type. The values of the respective L-Pt-L bond angles are 84.8° (P1-Pt-C1) and 94.4° (C1-Pt-N1). The values for remaining L-PL-L bond angles open in the order: 87.2° (N1-Pt-Cl) < 93.9° (P1-Pt-Cl) < 174.2° (P1-Pt-N1) < 174.8° (C1-Pt-Cl).
In triclinic [Pt{η3-Ph2P(C16H13NMe2)}(Cl)] (at 103 K) [19] the η3-ligand forms P1C3C1C2N1 type with the values of L-Pt-L chelate angles of 95.9° (P1-Pt-C1) and 82.2° (C1-Pt-N1). The remaining L-Pt-L bond angles open in the order: 89.5° (P1-Pt-Cl) < 92.6° (N1-Pt-Cl) < 174.4° (C1-Pt-Cl) < 176.1° (P1-Pt-N1).
The P1C3NC1NC3N1 type was formed in tetragonal [Pt{η3-Ph2P(C23H28N3)}(Cl)]PF6.thf Figure 2 [20]. The values of chelate L-Pt-L angles are 92.8° (P1-Pt-C1) and 86.1° (C1-Pt-N1). The remaining L-Pt-L bond angles open in the order 87.1° (N1-Pt-Cl) < 93.8° (P1-Pt-Cl) < 171.3° (C1-Pt-Cl) < 178.2° (P1-Pt-N1).
The Cl completed a distorted square planar geometry in these complexes about each Pt(II) atom. The Pt-L bond distance elongates in the order (mean values): 1.994 (±26) Å (Pt-C1, trans to Cl) < 2.151 (±25) Å (Pt-N1), trans to P1) < 2.223 (±15) Å (Pt-P1) < 2.389 (±72) Å (Pt-Cl).

2.2.4. Pt(η3-P1C1N1)(Y) (Y = NL, Br) Type

Monoclinic [Pt{η3-Ph2P(C8H6O2NPh)}(NCCH3)]BF4 (at 110 K) [21] is the only example in which a η3-ligand with monodentate NCCH3 ligand built up a distorted square planar geometry about Pt(II) atom. The heterotridentate ligand creates two five-membered metallocyclic rings of the P1OCC1C2N1 type. The values of the respective chelate L-PL-L bond angles are 80.3° (P1-Pt-C1), and 79.4° (C1-Pt-N1). The remaining L-Pt-L bond angles open in the order: 96.3° (N1-Pt-N) < 104.1° (P1-Pt-N) < 159.2° (P1-Pt-N1) < 174.4° (C1-Pt-N). The Pt-L bond distance elongates in the order: 1.950 Å (Pt-C1, trans to N) < 2.066 Å (Pt-N) < 2.127 Å (Pt-N1) < 2.200 Å (Pt-P1, trans to N1).
In two orthorhombic [Pt{η3-Ph2P(C8H6O2NPh)}(Br)] (at 150 K) [21] and [Pt{η3-Pri2P(C11H15NO2)}(Br)] (at 150 K) [22], each η3-ligand creates two five-membered metallocyclic rings with common C1 atom of the P1OCC1C2N1 type. The values of the respective chelate L-Pt-L bond angles (mean values) are 81.6° (P1-Pt-C1) and 79.5° (C1-Pt-N1). The remaining L-Pt-L bond angle open in the order (mean values): 98.3° (N1-Pt-Br) < 100.3° (P1-Pt-Br) < 159.6° (P1-Pt-N1) < 176.9° (C1-Pt-Br). The Pt-L bond distance elongates in the order (mean values): 1.956 Å (Pt-C1) < 2.163 Å (Pt-N1) < 2.179 Å (Pt-P1) < 2. 498 Å (Pt-Br).

3. Conclusions

This paper includes eighteen monomeric Pt(II) complexes with compositions Pt(η3-P1C1C2)(Y) (Y = NL, or I) and Pt(η3-P1C1N1)(Y), (Y = OL, NL, CL, Cl or Br). Recently, we classified and analyzed structural parameters of Pt(η3-P1N1N2)(Y), (Y = CL or Cl); Pt(η3-P1N1O1)(Y), (Y = PL, Cl or I); Pt(η3-P1N1C1)(Y), (Y = NL or Cl); Pt(η3-P1N1S1)(Y), (Y = Cl or I); Pt(η3-P1N1Si1)(Cl); Pt(η3-N1P1N2)(Cl); Pt(η3–S1P1S2)(Cl); Pt(η3-P1S1Cl1)(Cl) and Pt(η3-P1Si1N1)(OL) [10].
Each heterotridentate ligand creates two metallocyclic rings. These eleven sub-groups of η3-ligands build up twenty-three metallocycles types. These types based on the membered number of atoms in the chelate L-Pt-L angles with mean values are:
5+5: P1C2C1C2C2, P1C2C1PCC2, P1C2C1C2N1, P2OCC1C2N1, P1C2N1C2N2, P1C2N1NCO1, P1C2N1NCC1, S1C2P1C2S2; Σ 84.6/82.6°
5+6: P1C2C1C3N1, P1C2N1C3O1, P1C2S1C2BCl1, P1C2Si1C3N1; Σ 85.5/92.9°
6+5: P1C3C1C2N1, P1C3N1C2N2, P1C3N1NCN2, P1C3N1C2C1, P1C3N1NCS1; Σ 94.4/83.8°
6+6: P1C3N1C3N2, P1C3N1C3O1, P1C3N1C3S1, P1C3N1C3Se1; Σ 91.1/91.7°
7+7: P1C3NC1NC3N1; Σ 92.8/86.1°
There are at least two contributing factors to the size of the chelate bond angles both ligands based. One is the steric constraints imposed on the ligand and the other is the need to accommodate tridenticity where appropriate.
The Pt-P1 (trans to X1) bond distance elongates in the sequence (total mean values): 2.198 Å (X = Cl) < 2.206 Å (N2) < 2. 211 Å (O1) < 2. 215 Å (N1) < 2.239 Å (S1) < 2.260 Å (C1) < 2.327 Å (CL) < 2.407 Å (Se1).
The Pt-Y (trans to X1) bond distances elongate in the sequences: (total mean values):
Pt-NL: 2.02 Å (N1) < 2.097 Å (C1); Pt-OL: 2.175 Å (C1) < 2.353 Å (Si1);
Pt-CL: 2.068 Å (N1) < 2.085 Å (C1); Pt-Cl: 2.332 Å (N1) < 2.372 Å (P1) < 2.380 Å (S1) < 2.389 Å (C1); Pt-PL: 2.265 Å (N1); Pt-Br: 2.490 Å (C1); Pt-I: 2.590 Å (N1) < 2.663 Å (C1). These values correspond quite well with the trans influence of the respective X1-donor atoms.
In transition metal complexes, the oxidation state plays a leading role in the geometry formed and platinum is no exception. In four coordinate Pt(II) prefers a square planar geometry. The utility of a simple metric to assess molecule shape and degree of distortion best exemplified the τ4 parameter via an equation introduced by [23]:
τ 4 = 360 ( α + β ) 141 where β and α are the two largest angles and assume the value of 0 and 1 for the perfect square planar and perfect tetrahedral geometries, respectively.
The total mean values of τ4 and some structural parameters for the respective metallocycles are gathered in the following summary in Table 3:
It is well known that a distortion of a square-planar geometry around a metal atom diminishes with opening trans-L-Pt-L angles. As can be seen, the membered of metallocycles also play a role. When the sums of a “pair” of the respective L-Pt-L chelate, the angles distortion decreases.
We believe that such a structural analysis can continue to serve a useful function by centralizing available material in a wide scale of Pt complexes and delineating areas worthy of further investigation.

Author Contributions

Conceptualization, M.M. and P.M.; methodology M.M. and P.M.; Writing—Original draft preparation, M.M. and P.M.; data curation, M.M.; Writing—Review and editing, V.M.; supervision, M.M. and P.M.; funding acquisition, P.M. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the project VEGA 1/0514/22, VEGA 1/0146/23.

Data Availability Statement

Data supporting reported results can be found at author M.M.

Acknowledgments

This work was supported by the Faculty of Pharmacy, Comenius University Bratislava.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

But2P(C8H7NEt2)(2-((di-t-butylphosphino)methyl)-6-((diethylamino)methyl) phenyl)
But2P(C18H13O)(8-(di-t-butylphosphanyl)-7-methy-2-(4-methoxybenzene-1,2-diyl) naphthalene-1-yl)
But2P(C17H10F)(8-(di-t-butylphosphanyl)-7-methyl-2-(4-fluorobenzene-1,2-diyl) naphthalene-1-yl)
But2P(C17H9F2)(8-(di-t-butylphosphanyl)-7-methyl-2-(3,5-difluorobenzene-1,2-diyl) naphthalene-1-yl)
But2P(C18H13)(8-(di-t-butylphosphanyl)-7-methyl-2-(6-methylbenzen-1,2-yl) naphthalen-1-yl)
But2P(C9H9NMe2)(2-dimethylamino)ethyl)-6-2-(di-t-butylphosphinomethyl)-6-phenyl)
mmonoclinic
ororthorhombic
Ph2P(C16H13NMe2) (2-(1-(dimethylamino)ethyl)-6-(2-diphenylphosphino)-2-phenylvinyl)phenyl)
Ph2P(C23H28N3)(2-(2-(diphenylphoshino)benzyl)-1,8,8-trimethyl-4-(1-(pyridine-2-yl)ethyl)-2,4-diazobicyclo [9.2.1]octan-3-ylidene)
Ph2P(C8H6O2NPh)(2-((diphenylphosphino)oxy)-3-methoxy-6-(phenylimino) methyl)phenyl)
Ph2P(CH2C(Me)=C(3-(2-(2-methyl-3-diphenylphosphinopropenyl)
Ph2P(C6H4Ph)diphenylphosphino)biphenyl
Pri2P(C7H5ONC4H80)(2-((di-isopropylphosphino)oxy)-6-morpholino-4-yl)methyl)phenyl)
pypyridine
tgtetragonal
trtriclinic
Te1,2,3represents ligating Te atoms differing in distances/angles with Pt atoms
P1C2C1C2C2 (and sim.)superscripts represent the ligating donor atoms, in case of the same atoms they are differing in distances/angles with Pt atoms; subscripts represent atoms which are located between the respective donor atoms
NL, OL, CLN-donor ligand, O-donor ligand, C-donor ligand, respectively

References

  1. Rosenberg, B.; Van Camp, L.; Trasko, Y.E.; Mansour, V.H. Platinum Compounds: A New Class of Potent Antitumour Agents. Nature 1969, 222, 385–386. [Google Scholar] [CrossRef]
  2. Ashiq, M.; Danish, M.; Mohsin, M.; Bari, S.; Mukhtar, F. Chemistry of Platinum and Palladium Metal Complexes in Homo-geneous and Heterogeneous Catalysis: A Mini Review. Int. J. Sci. Basic Appl. Res. 2013, 7, 50–61. [Google Scholar]
  3. Mora, G.; Piechaczyk, O.; Houdard, R.; Mezailles, N.; Le Goff, X.F.; Le Floch, P. Why Platinum Catalysts Involving Ligands with Large Bite Angle Are so Efficient in the Allylation of Amines: Design of a Highly Active Catalyst and Comprehensive Experimental and DFT Study. Chem. Eur. J. 2008, 14, 10047–10057. [Google Scholar] [CrossRef]
  4. Irisli, S.; Guzelsoylu, C.; Karaman, M.; Buyukgungor, O. Chelated palladium and platinum complexes of diphosphinite ligands, ch2(o-c6h4opph2)2 and ph2po(ch2)3opph2: Characterization and catalytic activity. Phosphorus Sulfur Silicone Relat. Elem. 2015, 190, 1668–1679. [Google Scholar] [CrossRef]
  5. Jones, N.D.; Meessen, P.; Losehand, U.; Patrick, B.O.; James, B.R. Platinum(II) and Palladium(II) Complexes of Bisphosphine Ligands Bearing o-N,N-Dimethylanilinyl Substituents: A Hint of Catalytic Olefin Hydration. Inorg. Chem. 2005, 44, 3290–3298. [Google Scholar] [CrossRef] [PubMed]
  6. Chaaban, M.; Zhou, C.; Lin, H.; Chyic, B.; Ma, B. Platinum(ii) binuclear complexes: Molecular structures, photophysical properties, and applications. J. Mater. Chem. C 2019, 7, 5910–5924. [Google Scholar] [CrossRef]
  7. Santos, T.M.R.; Andolpho, G.A.; Tavares, C.A.; Gonçalves, M.A.; Ramalho, T.C. Improving the Path to Obtain Spectroscopic Parameters for the PI3K—(Platinum Complex) System: Theoretical Evidences for Using 195Pt NMR as a Probe. Magnetochemistry 2023, 9, 89. [Google Scholar] [CrossRef]
  8. Horiuchi, S.; Umakoshi, K. Recent advances in pyrazolato-bridged homo- and heterometallic polynuclear platinum and palladium complexes. Coord. Chem. Rev. 2023, 476, 214924. [Google Scholar] [CrossRef]
  9. Melník, M.; Mikuš, P. Organomonophosphines in Pt(II) Coordination Complexes. Part I. Monomeric Square Planar (PtP4, PtP3X and PtP2X2). Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 1764–1780. [Google Scholar] [CrossRef]
  10. Melník, M.; Mikuš, P. Heterotridentate Organomonophosphines in Pt(κ3-X1P1X2)(Y)(X1,2 = N1,2 or S1,2), Pt(κ3-P1N1X1)(Y) (X1 = O, C, S or Se) Pt(κ3–P1S1Cl1)(Cl) and Pt(κ3–P1Si1N1)(OL)—Structural Aspects. Crystals 2022, 12, 1772. [Google Scholar] [CrossRef]
  11. Melník, M.; Mikušová, V.; Mikuš, P. Organomonophosphines in Pt(η3-X1X2X3)(PR3), (X = N1, N2, N3; S1, S2, S3; or Te1, Te2, Te3) derivatives: Structural aspects. Inorganics 2023, 11, 242. [Google Scholar] [CrossRef]
  12. Wang, K.; He, X.; Rong, C.; Zhong, A.; Liu, S.; Zhao, D. On the origin and nature of internal methyl rotation barriers: An information-theoretic approach study. Theor. Chem. Acc. 2022, 141, 68. [Google Scholar] [CrossRef]
  13. Cao, X.; Rong, C.; Zhong, A.; Lu, T.; Liu, S. Molecular acidity: An accurate description with information-theoretic approach in density functional reactivity theory. J. Comput. Chem. 2018, 39, 117–129. [Google Scholar] [CrossRef]
  14. Dubinski-Davidchik, I.S.; Goldberg, I.; Vigalok, A.; Vedernikov, A.N. Unprecedented 1,3-migration of the arylligand in metallacyclic aryl α-naphthyl Pt(iv) difluorides to produce β-arylnaphthyl Pt(II) complexes. Chem. Commun. 2013, 49, 3446–3448. [Google Scholar] [CrossRef] [PubMed]
  15. Gracia, C.; Marco, G.; Navarro, R.; Romero, P.; Soler, T.; Urriolabeitia, P. C−P and C−H Bond Activations and C−C Coupling in Bis-Phosphonium Salts Induced by Platinum(II) Complexes. Organometallics 2003, 22, 4910–4921. [Google Scholar] [CrossRef]
  16. Poverenov, E.; Gandelman, M.; Shimon, L.J.W.; Rozenberg, H.; Ben-David, Y.; Milstein, D. Pincer “Hemilabile” Effect. PCN Platinum(II) Complexes with Different Amine “Arm Length”. Organometallics 2000, 24, 1082–1090. [Google Scholar] [CrossRef]
  17. Poverenov, E.; Gandelman, M.; Shimon, L.J.W.; Rozenberg, H.; Ben-David, Y.; Milstein, D. Nucleophilic de-coordination and electrophilic regeneration of “hemilabile” pincer-type complexes: Formation of anionic dialkyl, diaryl, and dihydride Pt(II) complexes bearing no stabilizing pi-acceptors. Chemistry 2004, 10, 4673–4684. [Google Scholar] [CrossRef]
  18. Poverenov, E.; Leitus, G.; Shimon, L.J.W.; Milstein, D. C-Metalated Diazoalkane Complexes of Platinum Based on PCP- and PCN-Type Ligands. Organometallics 2005, 24, 5937–5944. [Google Scholar] [CrossRef]
  19. Tan, K.W.; Yang, X.Y.; Li, Y.; Huang, Y.; Pullarkat, S.A.; Leung, P.H. Reactivity of Cycloplatinated Amine Complexes: Intramolecular C–C Bond Formation, C–H Activation, and PPh2 Migration in Coordinated Alkynylphosphines. Organometallics 2012, 31, 8407–8413. [Google Scholar] [CrossRef]
  20. Bouché, M.; Mordan, M.; Kariuki, B.M.; Coles, S.J.; Christensen, J.; Newman, P.D. Mono- and dimeric complexes of an asymmetric heterotopic P,CNHC,pyr ligand. Dalton Trans. 2016, 45, 13347–13360. [Google Scholar] [CrossRef]
  21. Siegler, M.A.; Spek, A.L.; van Koten, J.L. Structure of Monoclinic [Pt{η³-Ph2P(C8H6O2NPh)}(NΞCCH3)]BF4 (at 110 K) and Two Orthorhombic [Pt{η³-Ph2P(C8H6O2NPh)}(Br)] (at 150 K). CCDC, Ref Code: ZADMUP 2016. Available online: https://www.ccdc.cam.ac.uk/ (accessed on 25 May 2023).
  22. Lavelle, K.B.; Gutierrez, L.; Krause, J.A.; Connick, W.B. A luminescent Pt-POCN pincer complex via direct cyclometallation. Organomet. Chem. 2015, 785, 100–105. [Google Scholar] [CrossRef]
  23. Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(i) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 9, 955–964. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Structure of [Pt{η3-But2P(C18H13)}(py) [14].
Figure 1. Structure of [Pt{η3-But2P(C18H13)}(py) [14].
Inorganics 11 00338 g001
Figure 2. Structure of [Pt{η3-Ph2P(C23H28N3)}(Cl)] [20].
Figure 2. Structure of [Pt{η3-Ph2P(C23H28N3)}(Cl)] [20].
Inorganics 11 00338 g002
Table 1. Structural data for Pt(η3-P1C1C2)(Y) derivatives.
Table 1. Structural data for Pt(η3-P1C1C2)(Y) derivatives.
Complex
Pt(η3-P1C1C2)(Y)
Crystal cl.
Space gr.
Z
a [Å]
b [Å]
c [Å]
α [°]
β [°]
γ [°]
Chromophore
Chelate Rings
τ4 b
Pt-L a
[Å]
L-Pt-L a
[Å]
Ref.
[Pt{(η3-But2P(C18H13)}(py)]
(at 110 K)
or
P212121
4
11.100(0)
12.121(0)
19.413(1)
Pt P1C1C2N
(P1C2C1C2C2)
0.171
P1 2.328(1)
C1.1.973(3)
C2 2.045(3)
pyN 2.054(2)
P1,C1 84.2 c
C1,C2 81.2 c
P1,C2 165.2
P1,N 103.4
C2,N 99.4
C1,N 170.7
[14]
[Pt{η3-But2P(C18H13O)}.
(NCCH3)]
(at 110 K)
m
P21/n
4
18.058(0)
7.318(0)
19.792(0)
112.25(0)PtP1C1C2N
(P1C2C1C2C2)
0.181
P1 2.335(1)
C1.1.981(2)
C2 2.052(2)
LN 2.081(2)
P1,C1 83.2 c
C1,C2 81.4 c
P1,C2 163.0
P1,N 103.9
C2,N 92.0
C1,N 171.3
[14]
[Pt{η3-But2P(C17H9F2)}.
P(N=CCH3)]
(at 110 K)
m
P21/n
4
16.434(0)
8.353(0)
17.385(0)
97.56(0)PtP1C1C2N
(P1C2C1C2C2)
0.163
P1 2.316(2)
C1 1.973(3)
C2 2.067(2)
LN 2.078(2)
P1,C1 83.2 c
C1,C2 80.7 c
P1,C2 164.0
P1,N 101.3
C2,N 94.6
C1,N 172.8
[14]
[Pt{η3-But2P(C17H10F)}.
(NCCH3)]
(at 110 K)
m
P21/c
4
17.177(0)
7.446(0)
21.247(0)
106.10(0)PtP1C1C2N
(P1C2C1C2C2)
0.171
P1 2.329(2)
C1 1.975(3)
C2 2.068(3)
LN 2.057(2)
P1,C1 83.2 c
C1,C2 81.3 c
P1,C2 163.5
P1,N 103.2
C2,N 92.1
C1,N 172.3
[14]
[Pt{η3-Ph2P1(CH2C(Me)=C
PPh2(C6H4Ph)}(I)]
(at 100 K)
tr
P 1 ¯
2
9.822(1)
13.373(2)
14.254(2)
65.30(3)
78.17(3)
72.61(3)
PtP1C1C2I
(P1C2C1PCC2)
0.135
P1 2.269(1)
C1 2.010(4)
C2 2.042(4)
I 2.663(1)
P1,C1 79.3(1)
C1,C2 86.0(1)
P1,C2 165.0(1)
P1,I 98.5(1)
C2,I 96.3(1)
C1,I 175.9(1)
[15]
Footer: a. The chemical identity of the coordinated atom/ligand is specified in these columns; b. The parameter τ4 specifies a degree of distortion; c. Five-membered metallocyclic ring.
Table 2. Structural data for Pt(η3-P1C1N1)(Y) derivatives.
Table 2. Structural data for Pt(η3-P1C1N1)(Y) derivatives.
Complex
Pt(η3-P1C1N1)(Y)
Crystal cl.
Space gr.
Z
a [Å]
b [Å]
c [Å]
α [°]
β [°]
γ [°]
Chromophore
Chelate Rings
τ4 b
Pt-L a
[Å]
L-Pt-L a
[Å]
Ref.
[Pt{η3-But2P(C9H9NMe2)}. (OH)]
(at 120 k)
m
P21/c
4
20.075(4)
7.978(1)
12.800(3)
104.26(3)PtP1C1N1O
(P1C2C1C3N1)
0.046
P1 2.207(1)
C1 2.021(2)
N1 2.165(2)
HO 2.094(2)
P1,C1 83.7 c
C2,N 1 95.5 c
P1,N1 175.6
P1,O 97.3
N1,O 83.6
C1,O 177.8
[16]
[Pt{η3-But2P(C9H9NMe2)]. (H2O)]BF4.thf
(at 120 K)
m
P21/c
4
9.56(0)
14.941(0)
18.948(0)
97.12(0)PtP1C1N1O
(P1C2C1C3N1)
0.094
P1 2.233(2)
C1 1.994(3)
N1 2.166(2)
H2O 2.182(2)
P1,C1 84.0 c
C2,N 1 95.9 c
P1,N1 174.0
P1O 92.7
N1O 88.0
C1,O 172.6
[16]
[Pt{η3-But2P(C9H9NMe2)}. (OS(=O)2CF3)]
(at 120 K)
or
P212121
6
7.459(0)
16.565(0)
18.647(0)
PtP1C1N1O
(P1C2C1C3N1)
0.051
P1. 2.248(1)
C1 2.005(2)
N1 2.168(2)
LO 2.249 (2)
P1,C1 84.6 c
C1,N1 95.1 d
P1,N1 174.4
P1,O 93.9
N1,O 86.4
C1,O 178.2
[16]
[Pt{η3-But2P(C9H9NMe2)}. (CO)]BF4
(at 120 K)
m
P21/c
4
8.554(1)
15.064(3)
12.654(4)
93.03(3)PtP1C1N1C
(P1C2C1C3N1)
0.105
P1. 2.227(2)
C1 2.063(3)
N1 2.158(2)
OC 1.922(3)
P1,C1 83.1 c
C2,N 1 88.9 d
P1,N1 172.9
P1,C 94.4
N1,C 94.4
C1,C 172.3
[16]
[Pt{η3-But2P(C9H9NMe2)}. (CH3)]
(at 120 K)
tg
R-3
8
24.224(3)
17.904(4)
PtP1C1N1C
(P1C2C1C3N1)
0.051
P1 2.204(2)
C1 2.075(2)
N1 2.193(2)
H3C 2.187(2)
P1,C1 83.4 c
C1,N 1 93.4 d
P1N1 177.4
P1,C 94.0
N1,C 89.4
C1,C 175.2
[17]
[Pt{η3-But2P(C9H9NMe2)}{C(Ph)=N=N)}
(at 120 K)
tr
P 1 ¯
2
9.004(1)
10.345(2)
14.201(3)
72.53(8)
88.51(3)
77.85(3)
PtP1C1 N1C
(P1C2C1C3N1)
0.158
P1 2.220(1)
C1 2.053(2)
N1 2.176(2)
LC 2.146(3)
P1,C1 83.6 c
C1,N 1 93.2 d
P1N1 168.0
P1,C 96.8
N1,C 88.4
C1,C 169.5
[18]
[Pt{η3-But2P(C8H7NEt2)}. (Cl)]
(at 120 K)
m
P21/n
4
12.065(2)
13.391(3)
13.625(3)
104.69(3)PtP1C1N1Cl
(P1C2C1C3N1)
0.138
P1 2.217(1)
C1 1.971(2)
N1 2.191(2)
Cl 2.408(1)
P1,C1 83.6 c
C1,N 1 82.8 c
P1,N1 166.2
P1,Cl 100.5
N1,Cl 93.2
C1,Cl 174.3
[16]
[Pt{η3-But2P(C9H9NMe2)}. (Cl)]
(at 120 K)
m
P21/c
4
16.431(3)
7.487(1)
17.060(3)
108.35(3)PtP1C1N1Cl
(P1C2C1C2N1)
0.077
P1 2.226(1)
C1 2.020(2)
N1 2.189(2)
Cl 2.419(2)
P1,C1 84.8 c
C1,N 1 94.4 d
P1,N1 174.2
P1,Cl 93.9
N1,Cl 87.2
C1,Cl 174.8
[17]
[Pt{η3-Ph2P(C16H13NMe2)}. (Cl)]
(at 103 K)
tr
P 1 ¯
2
9.528(0)
10.415(0)
14.436(0)
81.31(0)
74.58(0)
66.96(0)
PtP1C1N1Cl
(P1C3C1C2N1)
0.066
P1 2.196(1)
C1 1.992(2)
N1 2.152(2)
Cl 2.384(1)
P1,C1 95.5 d
C1,N 1 82.2 c
P1,N1 176.1
P1,Cl 89.5
N1,Cl 92.6
C1,Cl 174.4
[19]
[Pt{η3-Ph2P(C23H28N3)}.
(Cl)]PF6.thf
tg
14
8
21.495(0)
19.249 (0)
PtP1C1N1Cl
(P1C3NC1NC3N1)
0.074
P1 2.258(1)
C1 1.991(2)
N1 2.073(3)
Cl 2.347(1)
P1,C1 92.8 e
C1,N 1 86.1 e
P1,N1 178.2
P1,Cl 93.8
N1,Cl 87.1
C1,Cl 171.3
[20]
[Pt{η3-Ph2P(C8H6O2NPh)}. (NCCH3)]BF4
(at 110 K)
m
P21/c
4
15.601(0)
9.496(0)
21.046(0)
120.60(0)PtP1C1N1N
(P1OCC1C2N1)
0.186
P1 2.200(2)
C1 1.950(1)
N1 2.127(2)
N 2.066(2)
P1,C1 80.3 c
C1,N 1 79.4 c
P1,N1 159.2
P1,N 104.1
N1,N 96.3
C1,N 1 174.4
[21]
[Pt{η3-Ph2P(C8H6O2NPh)}. (Br)]
(at 150 K)
or
P212121
6
14.459(0)
14.757(0)
21.590(0)
PtP1C1N1Br
(P1OCC1C2N1)
0.156
P1 2.177(2)
C1 1.946(3)
N1 2.134(3)
Br 2.488(1)
P1,C1 81.0 c
C1,N1 79.0 c
P1,N1 159.9
P1,Br 100.9
N1,Br 99.1
C1,Br 178.1
[21]
[Pt{η3-Pri2P(C11H15NO2)}. (Br)]
(at 150 K)
or
Pna21
6
23.138(0)
10.031(0)
8.207(0)
PtP1C1N1Br
(P1OCC1C2N1)
0.176
P1 2.180(1)
C1 1.966(6)
N1 2.192(5)
Br 2.509(2)
P1,C1 82.1(2) c
C1,N 1 79.9(2) c
P1,N1 159.4(1)
P1,Br 99.8(1)
N1,Br 97.5(1)
C1,Br 175.8(1)
[22]
Footer: a. The chemical identity of the coordinated atom/ligand is specified in these columns; b. The parameter τ4 specifies a degree of distortion; c. Five-membered metallocyclic ring; d. Six-membered metallocyclic ring; e. Seven-membered metallocyclic ring.
Table 3. Summary of total mean values of τ4 and selected structure parameters of analyzed metallocycles.
Table 3. Summary of total mean values of τ4 and selected structure parameters of analyzed metallocycles.
Chelate Rings MemberedΣ Sums of
Chelate Rings
L-Pt-L/L-Pt-L°
trans α
L-Pt-L°
trans β
L-Pt-L°
Σ trans α+β
L-Pt-L°
τ4
5+5167.4163.3174.4337.70.158
5+6176.3172.3174.4346.80.094
6+5177.8175.2173.8349.00.079
7+7178.9178.2171.3349.50.074
6+6183.7176.5175.5352.00.056
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Melník, M.; Mikušová, V.; Mikuš, P. Heterotridentate Organomonophosphines in Pt(η3-P1C1C2)(Y) and Pt(η3-P1C1N1)(Y) Derivatives—Structural Aspects. Inorganics 2023, 11, 338. https://doi.org/10.3390/inorganics11080338

AMA Style

Melník M, Mikušová V, Mikuš P. Heterotridentate Organomonophosphines in Pt(η3-P1C1C2)(Y) and Pt(η3-P1C1N1)(Y) Derivatives—Structural Aspects. Inorganics. 2023; 11(8):338. https://doi.org/10.3390/inorganics11080338

Chicago/Turabian Style

Melník, Milan, Veronika Mikušová, and Peter Mikuš. 2023. "Heterotridentate Organomonophosphines in Pt(η3-P1C1C2)(Y) and Pt(η3-P1C1N1)(Y) Derivatives—Structural Aspects" Inorganics 11, no. 8: 338. https://doi.org/10.3390/inorganics11080338

APA Style

Melník, M., Mikušová, V., & Mikuš, P. (2023). Heterotridentate Organomonophosphines in Pt(η3-P1C1C2)(Y) and Pt(η3-P1C1N1)(Y) Derivatives—Structural Aspects. Inorganics, 11(8), 338. https://doi.org/10.3390/inorganics11080338

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop