Significantly Enhanced Self-Cleaning Capability in Anatase TiO2 for the Bleaching of Organic Dyes and Glazes
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of the Samples
2.2. Characterization of the Samples
2.3. Photocatalytic Activity of the Samples
3. Results and Discussion
3.1. Structural and Morphology
3.2. BET Analysis
3.3. Optical Properties
3.4. Photocatalytic Activity
3.5. Self-Cleaning Properties of Mg-Doped TiO2 in Glaze Sample
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathew, S.; John, B.K.; Abraham, T.; Mathew, B. Metal-Doped Titanium Dioxide for Environmental Remediation, Hydrogen Evolution and Sensing: A Review. Chemistryselect 2021, 6, 12742–12751. [Google Scholar] [CrossRef]
- Lettieri, S.; Pavone, M.; Nanostructures, B. Composites and Hybrid Photocatalysts. Materials 2022, 15, 1271. [Google Scholar] [CrossRef] [PubMed]
- Jahdi, M.; Mishra, S.B.; Nxumalo, E.N.; Mhlanga, S.D.; Mishra, A.K. Synergistic effects of sodium fluoride (NaF) on the crystallinity and band gap of Fe-doped TiO2 developed via microwave-assisted hydrothermal treatment. Opt. Mater. 2020, 104, 109844. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.-X.; Barakat, T.; Wang, T.-M.; Krief, A.; Zeng, Y.-J.; Laboureur, M.; Fusaro, L.; Liao, H.-G.; Su, B.-L. Synergistic effects of carbon doping and coating of TiO2 with exceptional photocurrent enhancement for high performance H2 production from water splitting. J. Energy Chem. 2021, 56, 141–151. [Google Scholar] [CrossRef]
- de Almeida, G.C.; Mohallem, N.D.; Viana, M.M. Ag/GO/TiO2 nanocomposites: The role of the interfacial charge transfer for application in photocatalysis. Nanotechnology 2022, 33, 035710. [Google Scholar] [CrossRef]
- Byrne, C.; Dervin, S.; Hermosilla, D.; Merayo, N.; Blanco, A.; Hinder, S.; Harb, M.; Dionysiou, D.D.; Pillai, S.C. Solar light assisted photocatalytic degradation of 1,4-dioxane using high temperature stable anatase W-TiO2 nanocomposites. Catal. Today 2021, 380, 199–208. [Google Scholar] [CrossRef]
- Tao, J.; Luttrell, T.; Batzill, M. A two-dimensional phase of TiO2 with a reduced bandgap. Nat. Chem. 2011, 3, 296–300. [Google Scholar] [CrossRef]
- Sivkov, A.; Vympina, Y.; Ivashutenko, A.; Rakhmatullin, I.; Shanenkova, Y.; Nikitin, D.; Shanenkov, I. Plasma dynamic synthesis of highly defective fine titanium dioxide with tunable phase composition. Ceram. Int. 2022, 48, 10862–10873. [Google Scholar] [CrossRef]
- Buchalska, M.; Kobielusz, M.; Matuszek, A.; Pacia, M.; Wojtyła, S.; Macyk, W. On oxygen activation at rutile-and anatase-TiO2. ACS Catal. 2015, 5, 7424–7431. [Google Scholar] [CrossRef]
- Ji, Y.; Luo, Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2 (101) surface: The essential role of oxygen vacancy. J. Am. Chem. Soc. 2016, 138, 15896–15902. [Google Scholar] [CrossRef]
- Estrada-Flores, S.; Martinez-Luevanos, A.; Perez-Berumen, C.M.; Garcia-Cerda, L.A.; Flores-Guia, T.E. Relationship between morphology; porosity, and the photocatalytic activity of TiO2 obtained by sol-gel method assisted with ionic and nonionic surfactants. Bol. La Soc. Esp. Ceram. Y Vidr. 2020, 59, 209–218. [Google Scholar] [CrossRef]
- Byrne, C.; Rhatigan, S.; Hermosilla, D.; Merayo, N.; Blanco, A.; Michel, M.C.; Hinder, S.; Nolan, M.; Pillai, S.C. Modification of TiO2 with hBN: High temperature anatase phase stabilisation and photocatalytic degradation of 1,4-dioxane. J. Phys.-Mater. 2020, 3, 015009. [Google Scholar] [CrossRef]
- Yu, Z.H.; Zhu, S.L.; Zhang, L.H.; Watanabe, S. Mesoporous single crystal titanium oxide microparticles for enhanced visible light photodegradation. Opt. Mater. 2022, 127, 112297. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, P.; Krishnan, V. Selective and efficient aerobic oxidation of benzyl alcohols using plasmonic Au-TiO2: Influence of phase transformation on photocatalytic activity. Appl. Surf. Sci. 2022, 578, 151953. [Google Scholar] [CrossRef]
- Wu, J.M.; Xing, H. Facet-dependent decoration of TiO2 mesocrystals on TiO2 microcrystals for enhanced photoactivity. Nanotechnology 2020, 31, 025604. [Google Scholar] [CrossRef] [PubMed]
- Song, C.G.; Won, J.; Jang, I.; Choi, H. Fabrication of high-efficiency anatase TiO2 photocatalysts using electrospinning with ultra-violet treatment. J. Am. Ceram. Soc. 2021, 104, 4398–4407. [Google Scholar] [CrossRef]
- George, S.; Pokhrel, S.; Ji, Z.; Henderson, B.L.; Xia, T.; Li, L.; Zink, J.I.; Nel, A.E.; Mädler, L. Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J. Am. Chem. Soc. 2011, 133, 11270–11278. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Hernandez, F.; Gomez, R.; De la Torre, A.I.R.; Mantilla, A.; Lartundo-Rojas, L.; Martinez, A.M.M.; Cipagauta-Diaz, S. Structural changes and photocatalytic aspects into anatase network after doping with cerium: Comprehensive study via radial distribution functions, electron density maps and molecular hardness. J. Photochem. Photobiol. A-Chem. 2022, 428, 113855. [Google Scholar] [CrossRef]
- Shymanovska, V.V.; Khalyavka, T.A.; Manuilov, E.V.; Gavrilko, T.A.; Aho, A.; Naumov, V.V.; Shcherban, N.D. Effect of surface doping of TiO2 powders with Fe ions on the structural, optical and photocatalytic properties of anatase and rutile. J. Phys. Chem. Solids 2022, 160, 110308. [Google Scholar] [CrossRef]
- Huang, J.X.; Li, D.G.; Li, R.B.; Chen, P.; Zhang, Q.X.; Liu, H.J.; Lv, W.Y.; Liu, G.G.; Feng, Y.P. One-step synthesis of phosphorus/oxygen co-doped g-C3N4/anatase TiO2 Z-scheme photocatalyst for significantly enhanced visible-light photocatalysis degradation of enrofloxacin. J. Hazard. Mater. 2020, 386, 121634. [Google Scholar] [CrossRef]
- Sudrajat, H.; Babel, S.; Hartuti, S.; Phanthuwongpakdee, J.; Laohhasurayotin, K.; Nguyen, T.K.; Tong, H.D. Origin of the overall water splitting activity over Rh/Cr2O3 @anatase TiO2 following UV-pretreatment. Int. J. Hydrog. Energy 2021, 46, 31228–31238. [Google Scholar] [CrossRef]
- Alshehri, A.; Narasimharao, K. PtOx-TiO2 anatase nanomaterials for photocatalytic reformation of methanol to hydrogen: Effect of TiO2 morphology. J. Mater. Res. Technol.-JmrT 2020, 9, 14907–14921. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, C.Y. Effects of water-to-methanol ratio on the structural, optical and photocatalytic properties of titanium dioxide thin films prepared by mist chemical vapor deposition. Catal. Today 2020, 358, 172–176. [Google Scholar] [CrossRef]
- Alotaibi, A.M.; Williamson, B.A.D.; Sathasivam, S.; Kafizas, A.; Alqahtani, M.; Sotelo-Vazquez, C.; Buckeridge, J.; Wu, J.; Nair, S.P.; Scanlon, D.O.; et al. Enhanced Photocatalytic and Antibacterial Ability of Cu-Doped Anatase TiO2 Thin Films: Theory and Experiment. ACS Appl. Mater. Inter. 2020, 12, 15348–15361. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Y.; Li, H.L.; Yu, X.L.; Jia, Y.; Chang, Y.; Gao, S.M. Morphology regulated Bi2WO6 nanoparticles on TiO2 nanotubes by solvothermal Sb3+ doping as effective photocatalysts for wastewater treatment. Electrochim. Acta 2020, 330, 135167. [Google Scholar] [CrossRef]
- Li, J.; Chu, B.X.; Xie, Z.; Deng, Y.Q.; Zhou, Y.M.; Dong, L.H.; Li, B.; Chen, Z.J. Mechanism and DFT study of degradation of organic pollutants on rare earth ions doped TiO2 photocatalysts prepared by sol-hydrothermal synthesis. Catal. Lett. 2022, 152, 489–502. [Google Scholar] [CrossRef]
- Nithya, N.; Gopi, S.; Bhoopathi, G. An Amalgam of Mg-Doped TiO2 Nanoparticles Prepared by Sol-Gel Method for Effective Antimicrobial and Photocatalytic Activity. J. Inorg. Organomet. Polym. Mater. 2021, 31, 4594–4607. [Google Scholar] [CrossRef]
- Barbierikova, Z.; Dvoranova, D.; Sofianou, M.V.; Trapalis, C.; Brezova, V. UV-induced reactions of Mg2+-doped anatase nanocrystals with exposed {001} facets: An EPR study. J. Catal. 2015, 331, 39–48. [Google Scholar] [CrossRef]
- Cao, T.H.; Liang, Y.Z.; Bao, Q.F.; Xu, C.L.; Bai, M.M.; Luo, T.; Gu, X.Y. A simple solvothermal preparation of Mg-doped anatase TiO2 and its self-cleaning application, solar energy. Sol. Energy 2023, 249, 12–20. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallogr. Sect. A Found. Crystallogr. 1990, 46, 467–473. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-ray Diffraction, 2nd ed.; Addison-Wesley: London, UK, 1978. [Google Scholar]
- Olowoyo, J.O.; Kumar, M.; Singhal, N.; Jain, S.L.; Babalola, J.O.; Vorontsov, A.V.; Kumar, U. Engineering and modeling the effect of Mg doping in TiO2 for enhanced photocatalytic reduction of CO2 to fuels. Catal. Sci. Technol. 2018, 8, 3686–3694. [Google Scholar] [CrossRef]
- Dong, W.X.; Zhao, G.L.; Song, B.; Xu, G.; Zhou, J.; Han, G.R. Surfactant-free fabrication of CaTiO3 butterfly-like dendrite via a simple one-step hydrothermal route. Crystengcomm 2012, 14, 6990–6997. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, P.; Jiang, P.; Guo, Z.; Liu, W.; Lu, Q.; Cao, W. The formation mechanism of TiO2 polymorphs under hydrothermal conditions based on the structural evolution of [Ti(OH)h(H2O)6−h]4−h monomers. J. Mater. Chem. C 2019, 7, 5764–5771. [Google Scholar] [CrossRef]
- Kolker, A.; Pablo, J. Thermodynamic modeling of concentrated aqueous. Ind. Eng. Chem. Res. 1996, 35, 228–233. [Google Scholar] [CrossRef]
- Wang, C.C.; Wang, K.W.; Perng, T.P. Electron field emission from Fe-doped TiO2 nanotubes. Appl. Phys. Lett. 2010, 96, 143102. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.J.; Zhang, R.X.; Liu, Z.Z.; Deng, H.Y.; Cen, W.G.; Yan, Y.G.; Chen, Y.G. Oxygen vacancies boosted fast Mg2+ migration in solids at room temperature. Energy Storage Mater. 2022, 51, 630–637. [Google Scholar] [CrossRef]
- Ali, T.; Ahmed, A.; Siddique, M.N.; Alam, U.; Muneer, M.; Tripathi, P. Influence of Mg2+ ion on the optical and magnetic properties of TiO2 nanostructures: A key role of oxygen vacancy. Optik 2020, 223, 165340. [Google Scholar] [CrossRef]
- Dong, W.X.; Song, B.; Zhao, G.L.; Han, G.R. Controllable synthesis of CaTi2O4(OH)2 nanoflakes by a facile template-free process and its properties. Ceram. Int. 2013, 39, 6795–6803. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Shivaraju, H.P.; Yashas, S.R.; Harini, R. Application of Mg-doped TiO2 coated buoyant clay hollow-spheres for photodegradation of organic pollutants in wastewater. Mater. Today Proc. 2020, 27, 1369–1374. [Google Scholar] [CrossRef]
- Deng, R.H.; Liu, S.H.; Li, J.Y.; Liao, Y.G.; Tao, J.; Zhu, J.T. Mesoporous block copolymer nanoparticles with tailored structures by hydrogen-bonding-assisted self-assembly. Adv. Mater. 2012, 24, 1889–1893. [Google Scholar] [CrossRef]
- Huang, W.; Cheng, H.; Feng, J.; Shi, Z.; Bai, D.; Li, L. Synthesis of highly water-dispersible N-doped anatase titania based on low temperature solvent-thermal method. Arab. J. Chem. 2018, 11, 871–879. [Google Scholar] [CrossRef]
- Singh, M.K.; Mehata, M.S. Enhanced photoinduced catalytic activity of transition metal ions incorporated TiO2 nanoparticles for degradation of organic dye: Absorption and photoluminescence spectroscopy. Opt. Mater. 2020, 109, 110309. [Google Scholar] [CrossRef]
- Bally, A.R.; Korobeinikova, E.N.; Schmid, P.E.; Levy, F.; Bussy, F. Structural and electrical properties of Fe-doped thin films. J. Phys. D Appl. Phys. 1998, 31, 1149. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Augugliaro, V.; Loddo, V.; Marcì, G.; Palmisano, L.; López-Muñoz, M.J. Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions. J. Catal. 1997, 166, 272–283. [Google Scholar] [CrossRef]
- Zubair, M.A.; Al Mamun, A.; McNamara, K.; Tofail, S.A.M.; Islam, F.; Lebedev, V.A. Amorphous interface oxide formed due to high amount of Sm doping (5–20 mol%) stabilizes finer size anatase and lowers indirect band gap. Appl. Surf. Sci. 2020, 529, 146967. [Google Scholar] [CrossRef]
- Ferreira-Neto, E.P.; Ullah, S.; Martinez, V.P.; Yabarrena, J.M.C.; Simões, M.B.; Perissinotto, A.P.; Wender, H.; De Vicente, F.S.; Noeske, P.-L.M.; Ribeiro, S.J. Thermally stable SiO2@TiO2 core@shell nanoparticles for application in photocatalytic self-cleaning ceramic tiles. Mater. Adv. 2021, 2, 2085–2096. [Google Scholar] [CrossRef]
- Kim, S.M.; In, I.; Park, S.Y. Study of photo-induced hydrophilicity and self-cleaning property of glass surfaces immobilized with TiO2 nanoparticles using catechol chemistry. Surf. Coat. Technol. 2016, 294, 75–82. [Google Scholar] [CrossRef]
- Li, K.; Yao, W.; Liu, Y.; Wang, Q.; Jiang, G.; Wu, Y.; Lu, L. Wetting and anti-fouling properties of groove-like microstructured surfaces for architectural ceramics. Ceram. Int. 2022, 48, 6497–6505. [Google Scholar] [CrossRef]
- Akarsu, M.; Burunkaya, E.; Tunalı, A.; Selli, N.T.; Arpaç, E. Enhancement of hybrid sol–gel coating and industrial application on polished porcelain stoneware tiles and investigation of the performance. Ceram. Int. 2014, 40, 6533–6540. [Google Scholar] [CrossRef]
Vwater/Vethnol | Crystal Size (nm) | BET (m2/g) | Pore Size (nm) | Pore Volume (cm3/g) | Cell Volume Ǻ3 | |
---|---|---|---|---|---|---|
Mg-doped TiO2 | 15:0 | 13.6 | 152 | 13.8 | 0.415 | 136.458 |
12.5:2.5 | 13.2 | 148 | 12.5 | 0.402 | 136.315 | |
10:5 | 10.3 | 105 | 12.4 | 0.378 | 136.452 | |
7.5:7.5 | 8.1 | 101 | 12.0 | 0.350 | 136.689 | |
Pure TiO2 | 12.5:2.5 | 14.0 | 98 | 11.2 | 0.340 | 136.089 |
Type | Firing Temperature (°C) | Water Contact Angle (°) | Stain Resistance | Ref. | |
---|---|---|---|---|---|
Before Use | Irradiation after Use | ||||
Mg-doped TiO2 in glaze sample | 1180~1200 | 5.623 | 5.124 | After dripping water droplets, the blot floats as a whole | This work |
TiO2 doped in glaze sample | 1180~1200 | 12.26 | 13.56 | Not floating | This work |
The commercial self-cleaning ceramic products | 1180~1200 | 21.23 | 28.96 | Not floating | This work |
C-PEG/TiO2 coating | - | 26 | 11 | Blot cannot be completely removed | [50] |
Commercial ceramic tiles with groove-like microstructure surfaces | - | 164.75 | - | Blot cannot be completely removed | [51] |
Hybrid sol–gel coating and industrial application on polished porcelain stoneware tiles | - | - | - | With the help of cleaning agent, the stains can be removed from the surface | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Cao, T.; Bao, Q.; Dong, W.; Li, P.; Gu, X.; Liang, Y.; Zhou, J. Significantly Enhanced Self-Cleaning Capability in Anatase TiO2 for the Bleaching of Organic Dyes and Glazes. Inorganics 2023, 11, 341. https://doi.org/10.3390/inorganics11080341
Zhao T, Cao T, Bao Q, Dong W, Li P, Gu X, Liang Y, Zhou J. Significantly Enhanced Self-Cleaning Capability in Anatase TiO2 for the Bleaching of Organic Dyes and Glazes. Inorganics. 2023; 11(8):341. https://doi.org/10.3390/inorganics11080341
Chicago/Turabian StyleZhao, Tiangui, Tihao Cao, Qifu Bao, Weixia Dong, Ping Li, Xingyong Gu, Yunzi Liang, and Jianer Zhou. 2023. "Significantly Enhanced Self-Cleaning Capability in Anatase TiO2 for the Bleaching of Organic Dyes and Glazes" Inorganics 11, no. 8: 341. https://doi.org/10.3390/inorganics11080341
APA StyleZhao, T., Cao, T., Bao, Q., Dong, W., Li, P., Gu, X., Liang, Y., & Zhou, J. (2023). Significantly Enhanced Self-Cleaning Capability in Anatase TiO2 for the Bleaching of Organic Dyes and Glazes. Inorganics, 11(8), 341. https://doi.org/10.3390/inorganics11080341